The heaviest planet in the world is Jupiter!
When the frequency decreases the wavelength is further apart. When it increases its closer together. Think about a flat line when the frequency is low the wavelengths are wider. When its a high frequency the squiggly lines on the moniter are taller and thinner so the wavelengths are not as wide and not that far from each other depending on how high the frequency is.
Answer:
When the tangent of the cyclic frequency and time will be equal √2
Explanation:
Answer:
A. F=107.6nN
B. Repulsive
Explanation:
According to coulombs law, the force between two charges is express as
F=(Kq1q2) /r^2
If the charges are of similar charge the force will be repulsive and if they are dislike charges, force will be attractive.
Note the constant K has a value 9*10^9
Hence for a charge q1=7.10nC=7.10*10^-9, q2=4.42*10^-9 and the distance r=1.62m
If we substitute values we have
F=[(9×10^9) ×(7.10×10^-9) ×(4.42×10^-9)] /(1.62^2)
F=(282.4×10^-9)/2.6244
F=107.6×10^-9N
F=107.6nN
B. Since the charges are both positive, the force is repulsive
Answer:
Acceleration of that planet is 30
.
Given:
initial speed of hammer = 0 
time = 1 s
distance = 15 m
To find:
Acceleration due to gravity = ?
Formula used:
Distance covered by hammer is given by,
s = ut + 
s = distance
u = initial speed of hammer
t = time taken by hammer to reach ground
a = acceleration
Solution:
Distance covered by hammer is given by,
s = ut + 
s = distance
u = initial speed of hammer
t = time taken by hammer to reach ground
a = acceleration
u = 0
t = 1 s
s = 15 m
a = g
Thus substituting these value in above equation.
15 = 0 + 
g = 15 × 2
g = 30 
Thus, acceleration of that planet is 30
.