Answer:
<em>The force of friction acting on the block has a magnitude of 15 N and acts opposite to the applied force.</em>
Explanation:
<u>Net Force
</u>
The Second Newton's law states that an object acquires acceleration when an unbalanced net force is applied to it.
The acceleration is proportional to the net force and inversely proportional to the mass of the object.
If the object has zero net force, it won't get accelerated and its velocity will remain constant.
The m=2 kg block is being pulled across a horizontal surface by a force of F=15 N and we are told the block moves at a constant velocity. This means the acceleration is zero and therefore the net force is also zero.
Since there is an external force applied to the box, it must have been balanced by the force of friction, thus the force of friction has the same magnitude acting opposite to the applied force.
The force of friction acting on the block has a magnitude of 15 N opposite to the applied force.
The critical thinking step has the student just completed
in the situation describe when the student concluded that soda intake really
does have an effect on their energy level is the analysis. This is because the student
observed the effects of drinking soda by his experience.
Answer:
The answer to your question is letter B.
Explanation:
To answer this question, we must remember the third law of motion of Newton that states that For every action, there is an equal and opposite reaction.
Then, if the action force is 40 N to the right, the reaction force must be 40 N to the left.
Answer:
Athlete A
Explanation:
Power is the rate of doing work and it is calculated as follows:
Power = work done/time taken = mgh/t
(for work being done against gravity)
So for athlete A
P = (100 kg * 9.8 N/kg* 0.6m)/0.5 s = 1176 W
For athlete B
P = (150 kg * 9.8 N/kg* 0.6m)/1 s = 882 W
For athlete C
P = (200 kg * 9.8 N/kg* 0.6m)/2 s = 588 W
For athlete D
P = (250 kg * 9.8 N/kg* 0.6m)/2.5 s = 588