Answer:
Oxygen is the limiting reactant.
Explanation:
Based on the reaction:
C₁₂H₂₂O₁₁ + 12O₂ → 12CO₂ + 11H₂O
<em>1 mole of sucrose reacts with 12 moles of oxygen to produce 12 moles of CO₂ and 11 moles of H₂O.</em>
<em />
10.0g of sucrose (Molar mass: 342.3g /mol) are:
10.0g C₁₂H₂₂O₁₁ × (1mole / 342.3g) = 0.0292 moles of C₁₂H₂₂O₁₁
And moles of 10.0g of oxygen (Molar mass: 32g/mol) are:
10.0g O₂ × (1mole / 32g) = 0.3125 moles of O₂
For a complete reaction of 0.0292 moles of C₁₂H₂₂O₁₁ you need (knowing 12 moles of oxygen react per mole of sucrose):
0.0292 moles of C₁₂H₂₂O₁₁ × (12 moles O₂ / 1 mole C₁₂H₂₂O₁₁) = <em>0.3504 moles of O₂</em>
As you have just 0.3125 moles of O₂, <em>oxygen is the limiting reactant.</em>
The answer is d, you divide 5 by .5 and get the answer of 10. And since the bottle the force is to the right it will be to the right
Answer:
endothermic
Explanation:
endothermic reactions absorb heat from their surroundings, in this reaction the reactants are gas and solid and the products are liquid and gas, implying heat was absorbed to turn a solid to a liquid.
Answer:
Benzoic acid, anthracene
Explanation:
If you have a compound with an aqueous layer and organic layer, they can be distinguished by adding distilled water. The aqueous layer increases in size.
Organic products are soluble in organic solvent (organic layer). Benzoic acid, anthracene are both acidic, therefore if you perform an extraction with acidic aqueous solution both would dissolve in the methylene chloride thereby remaining in the organic layer.
<h3>
Answer:</h3>
69.918 g
<h3>
Explanation:</h3>
<u>We are given;</u>
- Mass of iron oxide as 100 g
We are supposed to determine the maximum theoretical yield of Iron from the blast furnace;
- The equation for the reaction in the blast furnace that extracts Iron from iron oxide is given by;
Fe₂O₃ + 3CO → 2Fe + 3CO₂
- We can first determine moles of Iron oxide;
Moles = Mass ÷ Molar mass
Molar mass of Fe₂O₃ = 159.69 g/mol
Therefore;
Moles of Fe₂O₃ = 100 g ÷ 159.69 g/mol
= 0.626 moles
- Then we determine moles of Iron produced
From the equation;
1 mole of Fe₂O₃ reacts to produce 2 moles of Fe
Therefore;
Moles of Fe = Moles of Fe₂O₃ × 2
= 0.626 moles × 2
= 1.252 moles
- Maximum theoretical mass of Iron that can be obtained
Mass = Moles × molar mass
Molar mass of Fe = 55.845 g/mol
Therefore;
Mass of Fe = 1.252 moles × 55.845 g/mol
= 69.918 g
Therefore, the maximum theoretical mass of Iron metal obtained is 69.918 g