Answer:
0.169
Explanation:
Let's consider the following reaction.
A(g) + 2B(g) ⇄ C(g) + D(g)
We can find the pressures at equilibrium using an ICE chart.
A(g) + 2 B(g) ⇄ C(g) + D(g)
I 1.00 1.00 0 0
C -x -2x +x +x
E 1.00-x 1.00-2x x x
The pressure at equilibrium of C is 0.211 atm, so x = 0.211.
The pressures at equilibrium are:
pA = 1.00-x = 1.00-0.211 = 0.789 atm
pB = 1.00-2x = 1.00-2(0.211) = 0.578 atm
pC = x = 0.211 atm
pD = x = 0.211 atm
The pressure equilibrium constant (Kp) is:
Kp = pC × pD / pA × pB²
Kp = 0.211 × 0.211 / 0.789 × 0.578²
Kp = 0.169
Answer ————
60.8 g ammonia
Answer:

Explanation:
According to the Law of Conservation of Mass, the mass of the products must equal the mass of the reactants.
- mass products = mass reactants
In this problem, the reaction is:

- The reactants are iron and oxygen. We know the mass of the iron sample is 10 grams.
- The product is ferric oxide. The mass of the ferric oxide sample is 18.2 grams.

We want to find how many grams of oxygen reacted. We have to get the oxygen by itself. 10 is being added to oxygen. The inverse of addition is subtraction. Subtract 10 from both sides of the equation.



<u>8.2 grams of oxygen </u>reacted with 10 grams of iron to form 18.2 grams of ferric oxide.
Answer:
m = 4450 g
Explanation:
Given data:
Amount of heat added = 4.45 Kcal ( 4.45 kcal ×1000 cal/ 1kcal = 4450 cal)
Initial temperature = 23.0°C
Final temperature = 57.8°C
Specific heat capacity of water = 1 cal/g.°C
Mass of water in gram = ?
Solution:
Formula:
Q = m.c. ΔT
Q = amount of heat absorbed or released
m = mass of given substance
c = specific heat capacity of substance
ΔT = change in temperature
ΔT = 57.8°C - 23.0°C
ΔT = 34.8°C
4450 cal = m × 1 cal/g.°C × 34.8°C
m = 4450 cal / 1 cal/g
m = 4450 g
The temperatures of the gases will not be equal as oxygen gas will have a higher temperature than hydrogen gas because it has fewer moles overall.
<h3>Briefing :</h3>
The mechanical behavior of ideal gases is described by the ideal gas law. It has the ability to compute the volume of gases created or absorbed.
This equation is frequently used in chemical equations to convert between volumes and molar quantities.
According to the ideal gas law, there is a relationship between gas pressure, temperature, and volume.
PV = nRT
V is the same for both
So,
T is same for both.
When n increases, T decreases, so since n for hydrogen gas is 1 and n for oxygen gas is 0.5, it follows that oxygen gas will have a higher temperature than hydrogen gas because it has fewer moles overall.
To know more about ideal gases :
brainly.com/question/15962335
#SPJ9