Let's start by writing a system of linear equations:
c -> cookies
cb -> candy bars
(You can use any abbreviations to your preference)
Abby:
4 cookies
3 candy bars
$10.25 per bag
The equation would be:
4c+ 3cb = $10.25
Marissa:
2 cookies
7 candy bars
$14.75 per bag
The equation would be:
2c + 7cb = $14.75
So our linear equation system would be:
<span>4c+ 3cb = $10.25
</span><span>2c + 7cb = $14.75
I would try to get rid of one variable so I can solve for the other variable. In this case, it is easier to get rid of c since I can multiply the second equations by 2. Then it would subtract the two equations.
(2c + 7cb = $14.75) 2 = 4c + 14 cb = $29.50
4c + 3cb = $10.25
- 4c+14 cb = $29.50 (4c would get canceled.)
---------------------------------
-11 cb = - $19.25 (Divide by -11 to solve for cb)
</span> --------- -------------
-11 -11
cb = $1.75
Now we know cb (candy bar) cost, we would substitute this value into cb into one of the equations. It doesn't matter which equation you put it in. I will substitute it in the first equations.
4c + 3 (1.75) = $10.25
4c + 5.25 = $10.25 (Multiply 3 by 1.75)
-5.25 -5.25 (Subtract 5.25 on both sides)
4c = 5 (Divide by 4 on both sides to get c)
---- ---
4 4
c= 1.25
Check the work:
4(1.25) + 3(1.75)
= $10.25
2(1.25) + 7(1.75)
= $14.75
Total cost:
cookies = $1.25
candy bars = $ 1.75
Hope this helps! :)
Answer:
The answer for this question would be maybe D-
SORRY IF I'M WRONG
<span>6.8 x 10^-2
The scientific notation of 70, 030, 000. To find the scientific notation of this value </span><span><span>
1. </span>We first move the period which separates the whole number from the decimal number which is located after the numbers of the given value.</span>
<span><span>2. </span>We move it in the very recent order number which is seventy million, seven and zero.</span> <span><span>
3. </span>It becomes 7.003</span>
<span><span>4. </span>Thus we count how many moves we did from the tens to the ten million order place.</span> <span><span>
5. </span>7.003 x 10^7<span>
</span></span>
First, lets create a equation for our situation. Let

be the months. We know four our problem that <span>Eliza started her savings account with $100, and each month she deposits $25 into her account. We can use that information to create a model as follows:
</span>

<span>
We want to find the average value of that function </span>from the 2nd month to the 10th month, so its average value in the interval [2,10]. Remember that the formula for finding the average of a function over an interval is:

. So lets replace the values in our formula to find the average of our function:
![\frac{25(10)+100-[25(2)+100]}{10-2}](https://tex.z-dn.net/?f=%20%5Cfrac%7B25%2810%29%2B100-%5B25%282%29%2B100%5D%7D%7B10-2%7D%20)



We can conclude that <span>the average rate of change in Eliza's account from the 2nd month to the 10th month is $25.</span>