"They react to neutralize the acid and base properties, producing a salt. The H(+) cation of the acid combines with the OH(-) anion of the base to form water."
Answer:
Mg + Fe(NO₃)₂ —> Fe + Mg(NO₃)₂
Explanation:
The activity series helps us to easily define whether or not a reaction will occur.
Elements at the top of the activity series are highly reactive and will always displace those at the bottom of the series in any reaction.
With the above information in mind, let us answer the questions given above.
Ag + NaNO₃ —> Na + AgNO₃
The above reaction will not occur because Na is higher than Ag in the activity series. Thus, Ag cannot displace Na from solution.
Pb + Mg(NO₃)₂ —> Pb(NO₃)₂ + Mg
The above reaction will not occur because Mg is higher than Pb in the activity series. Thus, Pb cannot displace Mg from solution.
Mg + Fe(NO₃)₂ —> Fe + Mg(NO₃)₂
The above reaction will occur because Mg is higher than Fe in the activity series. Thus, Mg will displace Fe from solution.
Cu + Mg(NO₃)₂ —> Cu(NO₃)₂ + Mg
The above reaction will not occur because Mg is higher than Cu in the activity series. Thus, Cu cannot displace Mg from solution.
From the above illustration, only
Mg + Fe(NO₃)₂ —> Fe + Mg(NO₃)₂
Will occur.
Answer: partial pressure of NOBr is 7792 atm
Explanation:
Equilibrium constant is the ratio of the concentration of products to the concentration of reactants each term raised to its stochiometric coefficients.

Equilibrium constant is given as:
![K_{p}=\frac{[p_{NOBr}]^2}{[p_{NO}]^2\times [p_{Br_2}]^1}](https://tex.z-dn.net/?f=K_%7Bp%7D%3D%5Cfrac%7B%5Bp_%7BNOBr%7D%5D%5E2%7D%7B%5Bp_%7BNO%7D%5D%5E2%5Ctimes%20%5Bp_%7BBr_2%7D%5D%5E1%7D)
![28.4=\frac{[p_{NOBr}]^2}{[(119)^2\times (151)^1}](https://tex.z-dn.net/?f=28.4%3D%5Cfrac%7B%5Bp_%7BNOBr%7D%5D%5E2%7D%7B%5B%28119%29%5E2%5Ctimes%20%28151%29%5E1%7D)
atm
Partial pressure of NOBr is 7792 atm
Taking into account the reaction stoichiometry, 5.33 moles of NH₃ are formed from the complete reaction of 16 grams of H₂.
<h3>Reaction stoichiometry</h3>
In first place, the balanced reaction is:
N₂ + 3 H₂ → 2 NH₃
By reaction stoichiometry (that is, the relationship between the amount of reagents and products in a chemical reaction), the following amounts of moles of each compound participate in the reaction:
- N₂: 1 mole
- H₂: 3 moles
- NH₃: 2 moles
The molar mass of the compounds is:
- N₂: 14 g/mole
- H₂: 2 g/mole
- NH₃: 17 g/mole
Then, by reaction stoichiometry, the following mass quantities of each compound participate in the reaction:
- N₂: 1 mole ×14 g/mole= 14 grams
- H₂: 3 moles ×2 g/mole= 6 grams
- NH₃: 2 moles ×17 g/mole=34 grams
<h3>Mass of NH₃ formed</h3>
The following rule of three can be applied: if by reaction stoichiometry 6 grams of H₂ form 2 moles of NH₃, 16 grams of H₂ form how many moles of NH₃?

<u><em>moles of NH₃= 5.33 moles</em></u>
Then, 5.33 moles of NH₃ are formed from the complete reaction of 16 grams of H₂.
Learn more about the reaction stoichiometry:
brainly.com/question/24741074
brainly.com/question/24653699
#SPJ1
The answer is Condensing or condensation.