When you are collecting DNA, you could be looking for a few different things. A few examples could be skin cells, strands of hair, or possibly even a fingernail. Anything that comes from a person, including blood or saliva can be potential DNA that could help investigators to link a person back to a crime.
Investigators do not need a warrant for analyzing crime scenes due to the fact of the dangers of the fire. You must work quickly because accelerants tend to evaporate within days, sometimes hours. It is also important to note that finding the origin of the fire is very important, to make sure it won't be reignited. Debris is usually cleaned away quickly to ensure health and safety issues.
The point of origin of a fire is the lowest point, since fire burns upwards.
High explosive: Ignite almost instantly, like dynamite and TNT. Two different types are primary and secondary.
<em>Primary: easily ignited, very sensitive to heat and friction. often used to ignite other explosives. </em>
<em>Secondary: much less sensitive to heat and friction, might be ignited using other explosive materials. TNT and dynamite are both secondary. </em>
Low explosive: decompose slowly and include black and smokeless powder. They are the most common type of explosives, and are readily available.
The energy required to raise the temperature of 3 kg of iron from 20° C to 25°C is 6,750 J( Option B)
<u>Explanation:</u>
Given:
Specific Heat capacity of Iron= 0.450 J/ g °C
To Find:
Required Energy to raise the Temperature
Formula:
Amount of energy required is given by the formula,
Q = mC (ΔT)
Solution:
M = mass of the iron in g
So 3 kg = 3000 g
C = specific heat of iron = 0.450 J/ g °C [ from the given table]
ΔT = change in temperature = 25° C - 20°C = 5°C
Plugin the values, we will get,
Q = 3000 g × 0.450 J/ g °C × 5°C
= 6,750 J
So the energy required is 6,750 J.
Answer:
-125 kJ
Explanation:
You calculate the energy required to break all the bonds in the reactants. Then you subtract the energy to break all the bonds in the products.
H₂C=CH₂ + H₂ ⟶ H₃C-CH₃
Bonds: 4C-H + 1C=C 1H-H 6C-H + 1C-C
D/kJ·mol⁻¹: 413 612 436 413 347
The formula relating ΔHrxn and bond dissociation energies (D) is
ΔHrxn = Σ(Dreactants) – Σ(Dproducts)
(Note: This is an exception to the rule. All other thermochemical reactions are “products – reactants”. With bond energies, it’s “reactants – products”. The reason comes from the way we define bond energies.)
<em>For the reactant</em>s:
Σ(Dreactants) = 4 × 413 + 1 × 612 + 1 × 436 = 2700 kJ
<em>For the products:</em>
Σ(Dproducts) = 6 × 413 + 1 × 347 = 2825 kJ
<em>For the system</em>
:
ΔHrxn = 2700 - 2825 = -125 kJ
The genotype will be (tt)
Hope this helps!
<span>Biotic and Abiotic Factors Form Ecosystems. In a healthy forest community, interacting populations might include birds eating insects, squirrels
eating nuts from trees, mushrooms growing from decaying leaves or bark,
and raccoons fishing in a stream. In addition to how individuals in a
population interact with each other, let me know if it helps :)</span>