Because the nuclear charge increases across a period and so it has a stronger pull on the outer electrons and will pull in the radius
Atoms of sulfur = 9.60⋅g32.06⋅g⋅mol−1×6.022×1023⋅mol−1 . Because the units all cancel out, the answer is clearly a number, ≅2×1023 as required.
Given the following equation; Cu + 2AgNO3 = Cu(NO3)2 + 2Ag, 48.97 grams of Cu are needed to react with 262g of AgNO3.
<h3>How to calculate mass of substances?</h3>
The mass of a substance can be calculated using the following steps:
Cu + 2AgNO3 = Cu(NO3)2 + 2Ag
1 mole of Cu react with 2 moles of AgNO3
- Molar mass of AgNO3 = 169.87 g/mol
- Molar mass of Cu = 63.5g/mol
moles of AgNO3 = 262g/169.87g/mol = 1.54mol
1.54 moles of AgNO3 will react with 0.77 moles of Cu.
mass of Cu = 0.77 × 63.5 = 48.97g
Therefore, given the following equation; Cu + 2AgNO3 = Cu(NO3)2 + 2Ag, 48.97 grams of Cu are needed to react with 262g of AgNO3.
Learn more about mass at: brainly.com/question/6876669
Note the signs of equilibrium:-
- Reaction don't procede forward or backward
- Concentration of products and reactants remains same .
So
if
Concentration of A is 2M then concentration of B should be same .
So equilibrium constant K is 1
![\\ \rm\rightarrowtail K=\dfrac{[Products]^a}{[Reactants]^b}](https://tex.z-dn.net/?f=%5C%5C%20%5Crm%5Crightarrowtail%20K%3D%5Cdfrac%7B%5BProducts%5D%5Ea%7D%7B%5BReactants%5D%5Eb%7D)
So
Answer:
The final and initial concentration of the acid and it's conjugate base are approximately equal, that is we use the weak acid approximation.
Explanation:
The Henderson-Hasselbalch is used to calculate the pH of a buffer solution. It depends on the weak acid approximation.
Since the weak acid ionizes only to a small extent, then we can say that [HA] ≈ [HA]i
Where [HA] = final concentration of the acid and [HA]i = initial concentration of the acid.
It also follows that [A^-] ≈ [A^-]i where [A^-] and[A^-]i refer to final and initial concentrations of the conjugate base hence the answer above.