Answer: Wavenumber of the radiation emitted is 
Explanation:
The relationship between wavelength and energy of the wave follows the equation:

where,
E = energy of the radiation = 
h = Planck's constant = 
c = speed of light = 
= wavelength of radiation = ?
Putting values in above equation, we get:


Thus wavenumber of the radiation emitted is 
The answer is Latitude (B)
Answer:
-2,044.0 kJ/mol
Explanation:
<em> I just did the test on edg</em>
<em />
<span>D) recycling ;)
Waste Management's Aerobic-Anaerobic Bioreactor* is designed to accelerate waste degradation by combining attributes of the aerobic and anaerobic bioreactors. The objective of the sequential aerobic-anaerobic treatment is to cause the rapid biodegradation of food and other easily degradable waste in the aerobic stage in order to reduce the production of organic acids in the anaerobic stage resulting in the earlier onset of methanogenesis. In this system the uppermost lift or layer of waste is aerated, while the lift immediately below it receives liquids. Landfill gas is extracted from each lift below the lift receiving liquids. Horizontal wells that are installed in each lift during landfill construction are used convey the air, liquids, and landfill gas. The principle advantage of the hybrid approach is that it combines the operational simplicity of the anaerobic process with the treatment efficiency of the aerobic process. Added benefits include an expanded potential for destruction of volatile organic compounds in the waste mass. (*US Patent 6,283,676 B1)</span>
Answer:
Mass = 381.28 g
Explanation:
Given data:
Number of moles of HNO₃ = 16 mol
Mass of Cu needed to react with 16 mol of HNO₃ = ?
Solution:
Chemical equation:
3Cu + 8HNO₃ → 3Cu(NO₃)₂ + 4H₂O + 2NO
Now we will compare the moles of Cu with HNO₃ from balance chemical equation.
HNO₃ : Cu
8 : 3
16 : 3/8×16 = 6
Mass of Cu needed:
Mass = number of moles × molar mass
Mass = 6 mol × 63.546 g/mol
Mass = 381.28 g