Too many to know in the world.
Answer:
Particles would move more freely, while still staying close together depending on the shape of the liquid
Explanation:
Melting is the process of going from a solid to a liquid due to the increase in heat/energy. This increase in heat/energy increases the speed at which the atoms within the object moves. Lets say we had an ice cube. While it is a cube, the particles inside the cube are slow and compact, staying close together.
When enough energy is gained, this makes the particles begin to move faster, gaining heat and energy which results in the ice cube melting and moving more freely than normal.
Answer:
Step 3
Explanation:
I am back sorry it took me so long, I believe its Step 3 because that's were you chose your strategy, you use it in Step 4, but if its not Step 3 its Step 4
1. identifying
problem solving step: 1)__ the problem is most difficult: not in habit of asking what the problem really is; in the habit of reacting or giving up
2. representing
problem solving step: 2) __ the problem: abstract or external representation
3. strategy
problem solving step: 3) selecting an appropriate __; trial and error vs means-ends analysis
4. implementing
problem solving step: 4) __ the strategy; dependent on previous steps
Answer:
Robert
Explanation:
There is not more than one colour
Answer:
Option 3. The catalyst does not affect the enthalpy change (
) of a reaction.
Explanation:
As its name suggests, the enthalpy change of a reaction (
) is the difference between the enthalpy of the products and the reactants.
On the other hand, a catalyst speeds up a reaction because it provides an alternative reaction pathway from the reactants to the products.
In effect, a catalyst reduces the activation energy of the reaction in both directions. The reactants and products of the reaction won't change. As a result, the difference in their enthalpies won't change, either. That's the same as saying that the enthalpy change
of the reaction would stay the same.
Refer to an energy profile diagram. Enthalpy change of the reaction
measures the difference between the two horizontal sections. Indeed, the catalyst lowered the height of the peak. However, that did not change the height of each horizontal section or the difference between them. Hence, the enthalpy change of the reaction stayed the same.