The phase change occurs during evaporation. On a hot day, wet clothing is drying. A liquid becomes a gas when it evaporations.
During the process of evaporation, a liquid transforms into a gaseous phase that is not saturated with the evaporating substance. The term "vaporization of a liquid" refers to this process. Clothes start to dry as water vapor escapes from the fabric's surface.
<h3>
What is evaporation?</h3>
A liquid turns into a gas through the process of evaporation. Raindrops that "vanish" on a hot day or damp clothing that dries in the sun are good examples of the phenomena. In these instances, the liquid water is evaporating into a gas known as water vapor rather than really dissipating. Global evaporation takes place.
Learn more about evaporation: brainly.com/question/5019199
#SPJ4
Answer:
36 mol H
Explanation:
1 molecule C₆H₁₂O₆ contains 12 H atoms
1 mol C₆H₁₂O₆ contains 12 mol H atoms; Multiply by 3
3 mol C₆H₁₂O₆ contains 36 mol H atoms
If you are talking about moles of hydrogen molecules (H₂), you divide 36 by 2 and get 18 mol H₂.
I don't know Im just Trying to get points somehow
Two independent variables could change at the same time, and you would not know which variable affected the dependent variable
Answer:
ΔHrxn = 178.3 kJ/mol
Explanation:
Using Hess's law, you can obtain ΔHrxn from ΔHf of products and reactants, thus:
<em>Hess's law: </em>
ΔHrxn = <em>∑nΔHf products - ∑nΔHf reactants</em>
<em>Where n are moles of reaction</em>
<em> </em>
Thus, from the reaction:
CaCO₃(s) → CaO(s) + CO₂(g)
ΔHrxn = <em>ΔHf </em>CaO(s)<em> + ΔHf </em>CO₂(g)<em> - ΔHf </em>CaCO₃(s)
ΔHrxn = -635.1kJ/mol + (-393.5kJ/mol) - (-1206.9kJ/mol)
<em>ΔHrxn = 178.3 kJ/mol</em>