Mass box C is 10+5. (So C is 15)
But if C was 30, how many times could you put B (5) into it?
30/5 = 6
You would need 6 boxes of B to make 30 grams of C.
<span>the atractions between the solute and solvent molecules must be greater than the atractions keeping the solute together and the atractions keeping the solvent togetherrr.</span>
We are given that the concentration of NaOH is 0.0003 M and are asked to calculate the pH
We know that NaOH dissociates by the following reaction:
NaOH → Na⁺ + OH⁻
Which means that one mole of NaOH produces one mole of OH⁻ ion, which is what we care about since the pH is affected only by the concentration of H⁺ and OH⁻ ions
Now that we know that one mole of NaOH produces one mole of OH⁻, 0.0003M NaOH will produce 0.0003M OH⁻
Concentration of OH⁻ (also written as [OH⁻]) = 3 * 10⁻⁴
<u>pOH of the solution:</u>
pOH = -log[OH⁻] = -log(3 * 10⁻⁴)
pOH = -0.477 + 4
pOH = 3.523
<u>pH of the solution:</u>
We know that the sum of pH and pOH of a solution is 14
pH + pOH = 14
pH + 3.523 = 14 [subtracting 3.523 from both sides]
pH = 10.477
Answer:
The final temperature will be "12.37°".
Explanation:
The given values are:
mass,
m = 0.125 kg
Initial temperature,
c = 22.0°C
Time,
Δt = 4.5 min
As we know,
⇒ 
On putting the estimated values, we get
⇒ 
⇒ 
Answer:
C
Explanation:ABC is being broken down into A, B, C