Answer:
Mass = 8.46 g
Explanation:
Given data:
Mass of water produced = ?
Mass of glucose = 20 g
Mass of oxygen = 15 g
Solution:
Chemical equation:
C₆H₁₂O₆ + 6O₂ → 6H₂O + 6CO₂
Number of moles of glucose:
Number of moles = mass/molar mass
Number of moles = 20 g/ 180.16 g/mol
Number of moles = 0.11 mol
Number of moles of oxygen:
Number of moles = mass/molar mass
Number of moles = 15 g/ 32 g/mol
Number of moles = 0.47 mol
now we will compare the moles of water with oxygen and glucose.
C₆H₁₂O₆ : H₂O
1 : 6
0.11 : 6/1×0.11 = 0.66
O₂ : H₂O
6 : 6
0.47 : 0.47
Less number of moles of water are produced by oxygen thus it will limit the yield of water and act as limiting reactant.
Mass of water produced:
Mass = number of moles × molar mass
Mass = 0.47 mol ×18 g/mol
Mass = 8.46 g
Answer: Option (A) is the correct answer.
Explanation:
When energy is transferred from the air to the water then energy is absorbed by the water molecules.
This energy travels through one molecule of water to another molecule of water by the process of convection.
Thus, we can conclude that when energy is transferred from the air to the water, then it travels through the water.
Answer:
The volume of NO₂ gas collected over water at 25.0 °C is 1.68 Liters.
Explanation:

Moles of copper = 
According to reaction, 1 mol of copper gives 2 moles of nitrogen dioxide gas.
Then 0.03613 moles of copper will give:
of nitrogen dioxide gas
Moles of nitrogen dioxide gas = n = 0.06326 mol
Pressure of the gas = P
P = Total pressure - vapor pressure of water
P = 726 mmHg - 23.8 mmHg = 702.2 mmHg
P = 0.924 atm (1 atm = 760 mmHg)
Temperature of the gas = T = 25.0°C =298.15 K
Volume of the gas = V


V = 1.68 L
The volume of NO₂ gas collected over water at 25.0 °C is 1.68 Liters.
Answer:
Forming the activated complex requires energy.
Explanation: