To solve this problem we will apply the concepts related to the Doppler effect. The Doppler effect is the change in the perceived frequency of any wave movement when the emitter, or focus of waves, and the receiver, or observer, move relative to each other. Mathematically it can be described as,

Here,
= Frequency of Source
= Speed of sound
f = Frequency heard before slowing down
f' = Frequency heard after slowing down
v = Speed of the train before slowing down
So if the speed of the train after slowing down will be v/2, we can do a system equation of 2x2 at the two moments, then,
The first equation is,



Now the second expression will be,



Dividing the two expression we have,

Solving for v, we have,

Therefore the speed of the train before and after slowing down is 22.12m/s
Answer:
Explanation:
During the first .8 s , the elevator is under acceleration . It starts from initial velocity u = 0 , final velocity v = 1.2 m /s , time = .8 s
v = u + at
1.2 = 0 + .8 a
a = 1.2 / .8
= 1.5 m /s²
During the acceleration in upward direction , let reaction force of ground on man be R .
Net force on man = R - mg
Applying Newton's 2 nd law
R - mg = ma
R = m ( g + a )
= 72 ( 9.8 + 1.5 )
= 813.6 N .
This reaction force will be measured by spring scale , so reading of spring scale will be 813.6 N .
We will put the number of trips in the first column, the miles driven in the second column and gallons of fuel used in the third column.
8 7,680 1,010
7 9,940 1,330
12 14,640 1,790
12 13,920 2,050
The hypotenuse is measured at 120 meters of string, and you need to solve for the leg of the triangle that is horizontal. The degree is 40, so use trigonometry to figure it out.
Cosin (40) is equal to around .766
Adjacent/Hypotenuse
x/120 = cos40
Answer: 91.92533.
If you use 3 significant figures it should be 91.9 meters.