Answer:
A. It makes astronauts weightless.
Explanation:
Gravity does not make astronauts feel weightless. Astronauts are weightless because they are orbiting at the same rate as their shuttle.
Although the force of gravity weakens as one moves away from the earth surface, it does not mean that this force is absent in orbit
- Gravitational force has a constant acceleration value near the earth surface which is commonly known to be 9.8m/s².
- It is a force of attraction tending to hold and bind bodies together so far they have mass.
- This force keeps every thing from escaping space-ward from the earth surface.
The speed of sound at sea level is 340.29 m/s (meters per seconds).
Answer:
B) Diphosphorus pentoxide
Explanation:
The book is lifted upward, but gravity points down, so the work done by gravity must be negative (so you can eliminate options 1 and 3).
The force exerted on the book by gravity has magnitude
<em>F</em> = <em>mg</em> = (10 N) (9.80 m/s^2) = 9.8 N ≈ 10 N
You raise the book 1.0 m in the opposite direction, so the work done is
<em>W</em> = (10 N) (-1.0 m) = -10 J
Answer:
6.57 m/s
Explanation:
First use Hook's Law to determine the F the compressed spring acts on the mass. Hook's Law F=kx; F=force, k=stiffnes of spring (or spring constant), x=displacement
F=kx; F=180(.3) = 54 N
Next from Newton's second law find the acceleration of the mass.
Newton's .2nd law F=ma; a=F/m ; a=54/.75 = 72m/s²
Now use the kinematic equation for velocity (or speed)
v₂²= v₀² + 2a(x₂-x₀); v₂=final velocity; v₀=initial velocity; a=acceleration; x₂=final displacement; x₀=initial displacment.
v₀=0, since the mass is at rest before we release it
a=72 m/s² (from above)
x₀=0 as the start position already compressed
x₂=0.3m (this puts the spring back to it's natural length)
v₂²= 0 + 2(72)(0.3) = 43.2 m²/s²
v₂=
= 6.57 m/s