The resistance of a given conductor depends on its electrical resistivity (
), its length(L) and its cross-sectional area (A), as follows:

In this case, we have
,
and
. So, the total resistance of the wire with length of 138m is:

<span>A: It is not an exact representation of the atom, but is close enough to be very useful.
Hope this helps!</span>
Answer:
Initial velocity will be 1.356 m/sec
Explanation:
Let the initial speed = u
Angle at which rubber band is launched = 37°
Horizontal component of initial velocity 
Time is given as t = 1.20 sec
Distance in horizontal direction = 1.30 m
We know that distance = speed × time
So time 


So initial velocity will be 1.356 m/sec
Force = mass * acceleration
F = ma
8 N = 2 kg * a
8 = 2a
2a = 8
a = 8/2 = 4
acceleration = 4 m/s²
Answer: Option A
Explanation:
The potential energy decreases in the case when the charges are opposite and they attract each other.
In this case there is no external energy required in order to put the charges together.
This is so because the charges are opposite and they will attract each other. Yes, the only condition should be that the charges should be alike.
Example: a negative charge and a positive charge.