Answer:
T² ∝ R³
Explanation:
Given data,
The period of revolution of the planet around the sun, T
The mean distance of the planet from the sun, R
According to the III law of Kepler, " Law of Periods' states that the square of the orbital period to go around the sun once is directly proportional to the cube of the mean distance between the sun and the planet.
T² ∝ R³

From the above equation it is clear that T² varies directly as the R³.
Answer:
5.01×10⁴ J.
Explanation:
Applying,
q = Cm....................... Equation 1
Where q = amount of heat needed to melt the ice, m = mass of the ice, C = specific latent heat of ice.
From the question,
Given: m = 150 g = (150/1000) kg = 0.15 kg, C = 3.34×10⁵ J/kg
Substitute these values into equation 1
q = (0.15×3.34×10⁵)
q = 0.501×10⁵ J
q = 5.01×10⁴ J.
<span>A. Boyle's law only works when the pressure is constant.
</span><span>D. Charles's law relates volume and pressure.
Hope this helps!</span>
Answer:
Explanation:
Considering non - relativistic approach : ----
Speed of electron = 1 % of speed of light
= .01 x 3 x 10⁸ m /s
= 3 x 10⁶ m /s
Kinetic energy of electron = 1/2 m v²
= .5 x 9.1 x 10⁻³¹ x ( 3 x 10⁶ )²
= 40.95 x 10⁻¹⁹ J
Kinetic energy in electron comes from lose of electrical energy equal to
Ve where V is potential difference under which electron is accelerated and e is electronic charge .
V x e = kinetic energy of electron
V x 1.6 x 10⁻¹⁹ = 40.95 x 10⁻¹⁹
V = 25.6 Volt .