Gravity accelerates you at 9.8 meters per second per second. After one second, you're falling 9.8 m/s. After two seconds, you're falling 19.6 m/s, and so on.
What it looks to be that you found in A was the "initial"...b/c the question asks:
<span>"how much energy does the electron have 'initially' in the n=4 excited state?" </span>
<span>"final" would be where it 'finally' ends up at, ie. its last stop...as for this question...the 'ground state' as in its lowest energy level. </span>
The answer comes to: <span>−1.36×10^−19 J</span>
You use the same equation for the second part as for part a.
<span>just have to subract the 2 as in the only diff for part 2 is that you use 1squared rather than 4squared & subract "final -initial" & you should get -2.05*10^-18 as your answer. </span>
Answer:
V = 4 cm^3
Explanation:
Divide the mass by the density.
3.50g/0.875g/mL = 4cm^3
V = 174 m/s
<span>
hope this helped</span>