Answer:
200 m/s
Explanation:
v = distance / time = 50km/250s = 50000m/250s = 200 m/s
All liquids become solid, above the melting point!!! Hope this helps!!!
Answer:
The answer is 3.33m
Explanation:
The acceleration "a" is constant.
Acceleration is the variation of velocity over time,
.
solving the last equation
,
where
because the airplane starts from rest.
Once again, velocity is the variation of distance over time.

then

where
if we consider the end of the runway as the initial point (this step is for simplicity but you can let it expressed, it's going to cancel anyway).
If
at
, then

and the final expression for the distance is
.
If t = 2s, x = 4.44 m. Which means thad the additional distance is

Answer: Your question is missing below is the question
Question : What is the no-friction needed speed (in m/s ) for these turns?
answer:
20.1 m/s
Explanation:
2.5 mile track
number of turns = 4
length of each turn = 0.25 mile
banked at 9 12'
<u>Determine the no-friction needed speed </u>
First step : calculate the value of R
2πR / 4 = πR / 2
note : πR / 2 = 0.25 mile
∴ R = ( 0.25 * 2 ) / π
= 0.159 mile ≈ 256 m
Finally no-friction needed speed
tan θ = v^2 / gR
∴ v^2 = gR * tan θ
v = √9.81 * 256 * tan(9.2°) = 20.1 m/s
Answer:
A) No conclusion can be drawn without more information about the two balls.
Explanation: