The correct answer to the question is : B) The weight of the water, and C) The height of the water.
EXPLANATION :
Before coming into any conclusion, first we have to understand potential energy of a body.
The potential energy of a body due to its position from ground is known as gravitational potential energy.
The gravitational potential energy is calculated as -
Potential energy P.E = mgh
Here, m is the mass of the body, and g is the acceleration due to gravity.
h stands for the height of the body from the ground.
We know that weight of a body is equal to the product of mass with acceleration due to gravity.
Hence, weight W = mg
Hence, potential energy is written as P.E = weight × height.
Hence, potential energy depends on the weight and height of the water.
The less valence electrons the more reactive the element is.
Answer:
600 and 1500 [ohm
Explanation:
To solve this problem we must use ohm's law, which tells us that the voltage is the product of the current by the resistance, so we have:
V = I*R
where:
V = voltage [V]
I = current [amp]
R = resistance [ohm]
<u>Therefore:</u>
R = V/I
R1 = 60/(40*10^-3) = 1500 [ohm]
R2 = 60/(100*10^-3) = 600 [ohm]
So the resistance should be among 600 and 1500 [ohm]
At the physically impossible-to-reach temperature of zero kelvin, or minus 459.67 degrees Fahrenheit (minus 273.15 degrees Celsius), atoms would stop moving. As such, nothing can be colder than absolute zero on the Kelvin scale.
7) p=w/t
2620/0.2
=13100W
8) W=pt
40*30
=1200 J
9) transformed