<span>If a plane has a velocity of 300 km/h and a tailwind of 20 km/h, then the vectors of both forces would add (assuming that the tailwind is blowing exactly at the airplanes back) to a total of 320 km/h. Hope it helps
</span>
B is the correct answer
y=Asin(wt-kx)
A=amplitude
f=frequency
x=wavelength
since refraction is not on the wave formula,then option B is the correct answer
2Fe(s) + O2 -> 2FeO(s)
<span>2 'Fe' atoms on both sides </span>
<span>2 'O' atoms on both sides</span>
Answer:
final temperature will be 0 degree C
Total amount of ice will be

total amount of water

Explanation:
After thermal equilibrium is achieved we can say that
Heat given by water = heat absorbed by ice cubes
so we will have
Heat given by water to reach 0 degree C



heat absorbed by ice cubes to reach 0 degree



so we will have

so here we can say that few amount of water will freeze here to balance the heat



so final temperature will be 0 degree C
Total amount of ice will be


total amount of water


Answer:
Centre of mass of any body is a point where all mass of a body is supposed to be concentrated
it lies in geometrical centre....