Answer:
is the maximum velocity of this reaction.
Explanation:
Michaelis–Menten 's equation:
![v=V_{max}\times \frac{[S]}{K_m+[S]}=k_{cat}[E_o]\times \frac{[S]}{K_m+[S]}](https://tex.z-dn.net/?f=v%3DV_%7Bmax%7D%5Ctimes%20%5Cfrac%7B%5BS%5D%7D%7BK_m%2B%5BS%5D%7D%3Dk_%7Bcat%7D%5BE_o%5D%5Ctimes%20%5Cfrac%7B%5BS%5D%7D%7BK_m%2B%5BS%5D%7D)
![V_{max}=k_{cat}[E_o]](https://tex.z-dn.net/?f=V_%7Bmax%7D%3Dk_%7Bcat%7D%5BE_o%5D)
v = rate of formation of products =
[S] = Concatenation of substrate
= Michaelis constant
= Maximum rate achieved
= Catalytic rate of the system
= Initial concentration of enzyme
We have :


![[S]=0.110 mol/dm^3](https://tex.z-dn.net/?f=%5BS%5D%3D0.110%20mol%2Fdm%5E3)
![v=V_{max}\times \frac{[S]}{K_m+[S]}](https://tex.z-dn.net/?f=v%3DV_%7Bmax%7D%5Ctimes%20%5Cfrac%7B%5BS%5D%7D%7BK_m%2B%5BS%5D%7D)
![1.15\times 10^{-3} mol/dm^3 s=V_{max}\times \frac{0.110 mol/dm^3}{[(0.045 mol/dm^3)+(0.110 mol/dm^3)]}](https://tex.z-dn.net/?f=1.15%5Ctimes%2010%5E%7B-3%7D%20mol%2Fdm%5E3%20s%3DV_%7Bmax%7D%5Ctimes%20%5Cfrac%7B0.110%20mol%2Fdm%5E3%7D%7B%5B%280.045%20mol%2Fdm%5E3%29%2B%280.110%20mol%2Fdm%5E3%29%5D%7D)
![V_{max}=\frac{1.15\times 10^{-3} mol/dm^3 s\times [(0.045 mol/dm^3)+(0.110 mol/dm^3)]}{0.110 mol/dm^3}=1.620\times 10^{-3} mol/dm^3 s](https://tex.z-dn.net/?f=V_%7Bmax%7D%3D%5Cfrac%7B1.15%5Ctimes%2010%5E%7B-3%7D%20mol%2Fdm%5E3%20s%5Ctimes%20%5B%280.045%20mol%2Fdm%5E3%29%2B%280.110%20mol%2Fdm%5E3%29%5D%7D%7B0.110%20mol%2Fdm%5E3%7D%3D1.620%5Ctimes%2010%5E%7B-3%7D%20mol%2Fdm%5E3%20s)
is the maximum velocity of this reaction.
Answer:
In the acid-catalyzed dehydration of 2-methyl-2-butanol, the reaction can be driven to completion using Le Chatelier's principle. The reaction is driven to completion because the released water molecules form a strong bond with the acid used as a catalyst. As a result, the alkene produced can be distilled from the mixture.
Explanation:
In the acid-catalyzed dehydration of 2-methyl-2-butanol, the reaction can be driven to completion using Le Chatelier's principle. The reaction is driven to completion because the released water molecules form a strong bond with the acid used as a catalyst. As a result, the alkene produced can be distilled from the mixture.
For average speed, we divide the total distance covered by the total time taken.
After doing that, you will see that Jane has the lowest average speed.
Answer:
2h+02=h20
Explanation:
2 in front of h on left side
2 in front of h on right side
<span>any electrolyte that is not easily reduced or oxidized</span>