According to Arrhenius Theory of acids and bases, an Arrhenius base, when dissolving in water, produces the only negative ion: OH-.
Therefore, (3) OH- is the correct answer.
Hope this is helpful~
<h3>
Answer:</h3>
2670 g Hg
<h3>General Formulas and Concepts:
</h3>
<u>Math</u>
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
<u>Chemistry</u>
<u>Atomic Structure</u>
- Reading a Periodic Table
- Avogadro's Number - 6.022 × 10²³ atoms, molecules, formula units, etc.
<u>Stoichiometry</u>
- Using Dimensional Analysis
<h3>Explanation:
</h3>
<u>Step 1: Define</u>
8.02 × 10²⁴ atoms Hg
<u>Step 2: Identify Conversions</u>
Avogadro's Number
Molar Mass of Hg - 200.59 g/mol
<u>Step 3: Convert</u>
- Set up:

- Divide/Multiply:

<u>Step 4: Check</u>
<em>Follow sig fig rules and round. We are given 3 sig figs.</em>
2671.42 g Hg ≈ 2670 g Hg
Answer: The laboratory value of potassium (3.0 mmol / L) is consistent with the client's symptoms of hypokalemia.
Explanation:
Hello!
Let's solve this!
Hypokalemia is a disorder in the body's electrolyte balance, when the decrease in blood potassium (K) ion levels is below 3.5 mmol / L. Potassium losses can occur through the digestive tract: such as vomiting and
diarrhea The most frequent symptoms of potassium loss include: tiredness, muscle weakness and cramping.
In conclusion, the laboratory value of potassium (3.0 mmol / L) is consistent with the client's symptoms of hypokalemia.