Answer:
2H3PO4 +3Ca(OH) 2 = Ca3 (PO4) 2 +6H20
Here's the equation:
<span>Fe2 O3 + 2Al → 2Fe + Al2 O3
</span>
Here's the question.
What mass of Al will react with 150g of Fe2 O3?
<span>In every 2 moles Al you need 1 mole Fe2O3 </span>
<span>moles = mass / molar mass </span>
<span>moles Fe2O3 = 150 g / 159.69 g/mol </span>
<span>= 0.9393 moles </span>
<span>moles Al needed = 2 x moles Fe2O3 </span>
<span>= 2 x 0.9393 mol </span>
<span>= 1.879 moles Al needed </span>
<span>mass = molar mass x moles </span>
<span>mass Al = 26.98 g/mol x 1.879 mol </span>
<span>= 50.69 g </span>
<span>= 51 g (2 sig figs)
</span>
So the <span>mass of Al that will react with 150g of Fe2 O3 is 51 grams.</span>
Instability
Explanation:
Isotopes decays because they are unstable. Stable isotopes do not decay.
- For every atomic nucleus, there is a specific neutron/proton ratio.
- This ratio ensure that a nuclide is stable.
- For example, fluorine F, is 10/9 stable.
- Any nucleus with a neutron/proton combination different from its stability ratio either too many neutrons or too many protons will become unstable.
- Such nuclide will split into one or more other nuclei with the emission of small particles of matter and considerable amount of energy.
Learn more:
Radioactive brainly.com/question/10125168
#learnwithBrainly
Answer:
Box is made up of <em>copper</em>, because density is <em>8.96 g/cm³.</em>
Explanation:
Given data:
Volume of box = 17.63 cm³
Mass of box = 158 g
Which metal box is this = ?
Solution:
First we will calculate the density of box then we will compare it with the density value of given metals.
d = m/v
d = 158 g/ 17.63 cm³
d = 8.96 g/cm³
The calculated density is similar to the given density value of copper thus box is made up of copper.
Answer : The work done by the system is, 2.2722 J
Explanation :
The expression used for work done in reversible isothermal expansion will be,

where,
w = work done = ?
n = number of moles of gas = 0.00100 mole
R = gas constant = 8.314 J/mole K
T = temperature of gas = 
= initial volume of gas = 25 mL
= final volume of gas = 75 mL
Now put all the given values in the above formula, we get:


Therefore, the work done by the system is, 2.2722 J