342.3 g/mol
11 times 16
22 times 1
12 times 12
and then add them together
Answer:
(a) Homogeneous. 4.7 g of MgCl₂.
(b) 9.1 g
Explanation:
(a)
At 200°C, we can dissolve 54.6g of MgCl₂ in 100 g of water. The mass that we could dissolve in 38.2 g of water is:

Since we can dissolve up to 20.9 g of MgCl₂ and we added only 16.2 g, the mixture is homogeneous and we could add 20.9 g -16.2 g = 4.7 g of solute to make it saturated.
(b)
At 800°C, we can dissolve 66.1 g of MgCl₂ in 100 g of water. The mass that we could dissolve in 38.2 g of water is:

Since we can dissolve up to 25.3 g of MgCl₂ and we added only 16.2 g, we could add 25.3 g - 16.2 g = 9.1 g of solute to make it saturated.
The mass of I₂ that contains 2.57×10²⁵ molecules is 10843.52 g
From a detailed understanding of Avogadro's hypothesis, we understood 1 mole of any substance contains 6.02×10²³ molecules. This implies that 1 mole of I₂ also 6.02×10²³ molecules i.e
<h3>6.02×10²³ molecules = 1 mole of I₂</h3>
Recall:
1 mole of I₂ = 2 × 127 = 254 g
Thus,
<h3>6.02×10²³ molecules = 254 g of I₂</h3>
With the above information, we can obtain the mass of I₂ that contains 2.57×10²⁵ molecules. This is illustrated below:
6.02×10²³ molecules = 254 g of I₂
Therefore,
2.57×10²⁵ molecules = 
<h3>2.57×10²⁵ molecules = 10843.52 g of I₂</h3>
Thus, the mass of I₂ that contains 2.57×10²⁵ molecules is 10843.52 g
Learn more: brainly.com/question/24848191