Answer:
correct option is b. 31.3 m/s
Explanation:
given data
artificial gravity a1 = 1 g
artificial gravity a2 = 2 g
diameter = 100 m
radius r= 50 m
speed v1 = 22.1 m/s
solution
As acceleration is ∝ v²
so we can say
.....................1
put here value
solve it
v2 =
× 22.1
v2 = 31.25 m/s
so correct option is b. 31.3 m/s
Explanation:
The water cycle basically involves five steps:
- evaporation and transpiration ⇄
- condensation, ⇄
- precipitation, ⇄
- runoff, ⇄
- infiltration ⇄
So when a <u>thunderstorm </u>occurs it <em>helps in completing the precipitation process </em>by enabling the release of water vapor stored up in the atmosphere to fall on the ground as rain.
After this, the water <em>runoffs </em><em>to the surface of the ground, on plants, into rocks, rivers, and lakes.</em>
Next, the <em>Infiltration process</em> enables the water on the ground surface to enter the soil some of which becomes groundwater.
The cycle begins again as the<em> </em><em>evaporation and transpiration</em> <em>process </em>begins, where the groundwater as a result of heat from the sun is taken back into the atmosphere, while water in plants by means of transpiration goes back <em>into the atmosphere</em>.
It then <em>condenses </em>and falls back as precipitation again.
P=I^2 *R
600 =5.0^2 *R
R=24
Answer: 24 ohms
I hope it’s correcttttttt...
50 +50 =100 Since it’s sitting on a 50m cliff that’s high with a mass of 50 kg it would be adding because once it goes down it’s adding speed
<h3>Option B</h3><h3>The time constant of a 10 H inductor and a 200 ohm resistor connected in series is 50 millisecond</h3>
<em><u>Solution:</u></em>
Given that,
10 H inductor and a 200 ohm resistor connected in series
To find: time constant
<em><u>The time constant in seconds is given as:</u></em>

Where,
L is the inductance in henry and R is the resistance in ohms

Convert to millisecond
1 second = 1000 millisecond
0.05 second = 0.05 x 1000 = 50 millisecond
Thus time constant is 50 millisecond