1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
TEA [102]
3 years ago
15

What Grade will you give my One Pager so Far?

Physics
2 answers:
AnnZ [28]3 years ago
7 0

Answer:

98

Explanation:

Trava [24]3 years ago
7 0

Answer:

98.5

Explanation:

the .5 is because of the colors

You might be interested in
(b) Figure 4 shows a car travelling on a motorway.
Alik [6]

Answer:

To calculate anything - speed, acceleration, all that - we need <em>data</em>. The more data we have, and the more accurate that data is, the more accurate our calculations will be. To collect that data, we need to <em>measure </em>it somehow. To measure anything, we need tools and a method. Speed is a measure of distance over time, so we'll need tools for measuring <em>time </em>and <em>distance</em>, and a method for measuring each.

Conveniently, the lamp posts in this problem are equally spaced, and we can treat that spacing as our measuring stick. To measure speed, we'll need to bring time in somehow too, and that's where the stopwatch comes in. A good method might go like this:

  1. Press start on the stopwatch right as you pass a lamp post
  2. Each time you pass another lamp post, press the lap button on the stopwatch
  3. Press stop after however many lamp posts you'd like, making sure to hit stop right as you pass the last lamp post
  4. Record your data
  5. Calculate the time intervals for passing each lamp post using the lap data
  6. Calculate the average of all those invervals and divide by 40 m - this will give you an approximate average speed

Of course, you'll never find an *exact* amount, but the more data points you have, the better your approximation will become.

5 0
3 years ago
Consider the vector field. f(x, y, z) = xy2z2i x2yz2j x2y2zk (a) find the curl of the vector field?
Marat540 [252]

Observe that the given vector field is a gradient field:

Let f(x,y,z)=\nabla g(x,y,z), so that

\dfrac{\partial g}{\partial x} = x y^2 z^2

\dfrac{\partial g}{\partial y} = x^2 y z^2

\dfrac{\partial g}{\partial z} = x^2 y^2 z

Integrating the first equation with respect to x, we get

g(x,y,z) = \dfrac12 x^2 y^2 z^2 + h(y,z)

Differentiating this with respect to y gives

\dfrac{\partial g}{\partial y} = x^2 y z^2 + \dfrac{\partial h}{\partial y} = x^2 y z^2 \\\\ \implies \dfrac{\partial h}{\partial y} = 0 \implies h(y,z) = i(z)

Now differentiating g with respect to z gives

\dfrac{\partial g}{\partial z} = x^2 y^2 z + \dfrac{di}{dz} = x^2 y^2 z \\\\ \implies \dfrac{di}{dz} = 0 \implies i(z) = C

Putting everything together, we find a scalar potential function whose gradient is f,

f(x,y,z) = \nabla \left(\dfrac12 x^2 y^2 z^2 + C\right)

It follows that the curl of f is 0 (i.e. the zero vector).

5 0
2 years ago
A ball, with a mass of 5.9kg, is thrown directly upwards. It reaches a maximum height of 10m from the point at which it was rele
katrin2010 [14]

Answer:

14 m/s

Explanation:

We can solve the problem by using the law of conservation of energy.

At the beginning, when the ball is thrown from the ground, it has only kinetic energy, which is given by

K=\frac{1}{2}mv^2

where m = 5.9 kg is the mass of the ball and v is its initial speed.

As the ball goes up, its speed decreases, so its kinetic energy decreases and converts into gravitational potential energy. When the ball reaches its maximum height, the speed has become zero, and all the kinetic energy has been converted into gravitational potential energy, given by:

U=mgh

where g = 9.8 m/s^2 is the gravitational acceleration and h = 10 m is the maximum height reached by the ball.

Since we can ignore air resistance, energy must be conserved, so the initial kinetic energy must be equal to the final potential energy of the ball, so we can write:

K=U\\\frac{1}{2}mv^2=mgh

And we can solve the equation to find v, the initial speed of the ball:

v=\sqrt{2gh}=\sqrt{2(9.8 m/s^2)(10 m)}=14 m/s


8 0
3 years ago
The ramp on the back of a moving van is in example of what type <br> simple machine
abruzzese [7]
Inclined Plane.Because an inclined plane is a flat,sloped surface. And a ramp is a perfect example of an inclined plane.
4 0
4 years ago
Read 2 more answers
Burning a canful of petrol or dropping it. which is likely to release most energy?​
Neporo4naja [7]

Answer:

Burning of canful of petrol will release more energy

Explanation:

If you like my answer than please mark me brainliest

5 0
3 years ago
Other questions:
  • A young girl gives her toboggan a push of 4.0m/s uphill. It slides up the hill slowing down at an acceleration of 8.0m/s down. I
    9·1 answer
  • A rock is rolling down a hill. At position 1, its velocity is 2.0 m/s. Twelve seconds later, as it passes position 2, its veloci
    7·2 answers
  • Tectonic plates are large segments of the Earth's crust that move slowly. Suppose that one such plate has an average speed of 4.
    14·1 answer
  • A remote-controlled car’s wheel accelerates at 22.2 rad/s2 . If the wheel begins with an angular speed of 11.0 rad/s, what is th
    5·1 answer
  • How is thermal energy transferred during conduction? Check all that apply.
    5·1 answer
  • Please help ASAP! Due in 10 minutes. Will give Brainliest.
    12·1 answer
  • A space rover weighs less on Mars than it does on Earth. Which statement explains this difference? A. The gravitational constant
    10·1 answer
  • When a constant force acts on an object, what does the object's change in momentum depend upon?
    15·1 answer
  • What are the effects of moon rotation and revolution​
    5·1 answer
  • What is the difference between the contagion theory and the convergence
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!