Answer:
The angle is 25.34°.
Explanation:
Given that,
Wave length = 650 nm
Angle = 68.0°
We need to calculate the distance
For a diffraction grating



We need to calculate the angle
Using formula for angle




Hence, The angle is 25.34°.
F=ma
Force is 50N. Acceleration is 25 m/s^2.
50N=m*25 m/s^2
Divide both sides by 25.
mass=2 kg
Answer:
Required heat Q = 11,978 KJ
Explanation:
Given:
Mass = 5.3 kg
Latent heat of vaporization of water = 2,260 KJ / KG
Find:
Required heat Q
Computation:
Required heat Q = Mass x Latent heat of vaporization of water
Required heat Q = 5.3 x 2260
Required heat Q = 11,978 KJ
Required heat Q = 12,000 KJ (Approx.)
The potential energy of a 2-μc charge at that point in space is
joules.
Given,
V=400v, q=2-μc=2*
,
U(potential energy)=V*q=400*2*
=
joules.
<h3>Potential energy</h3>
The energy that an item retains due to its position in relation to other objects, internal tensions, electric charge, or other reasons is known as potential energy in physics. The gravitational potential energy of an object is based on its mass and the distance from the centre of mass of another object. Other common types of potential energy include the elastic potential energy of an extended spring and the electric potential energy of an electric charge in an electric field. The joule, denoted by the sign J, is the SI's definition of an energy unit.
The vectors that are described as gradients of a particular scalar function known as potential can be used to represent these forces, also known as conservative forces, at any location in space.
At a certain point in space there is a potential of 400 v. what is the potential energy of a 2-μc charge at that point in space? group of answer choices'
Learn more about potential energy here:
brainly.com/question/15764612
#SPJ4
Answer: This is true
Explanation: v2=800/25= 32m/s