1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
otez555 [7]
2 years ago
9

How to make a police car ​

Engineering
1 answer:
S_A_V [24]2 years ago
3 0

search it and you will get on internet

You might be interested in
A Rankine steam power plant is considered. Saturated water vapor enters a turbine at 8 MPa and exits at condenser at 10 kPa. The
Ray Of Light [21]

Answer:

0.31

126.23 kg/s

Explanation:

Given:-

- Fluid: Water

- Turbine: P3 = 8MPa , P4 = 10 KPa , nt = 85%

- Pump: Isentropic

- Net cycle-work output, Wnet = 100 MW

Find:-

- The thermal efficiency of the cycle

- The mass flow rate of steam

Solution:-

- The best way to deal with questions related to power cycles is to determine the process and write down the requisite properties of the fluid at each state.

First process: Isentropic compression by pump

       P1 = P4 = 10 KPa ( condenser and pump inlet is usually equal )

      h1 = h-P1 = 191.81 KJ/kg ( saturated liquid assumption )

       s1 = s-P1 = 0.6492 KJ/kg.K

       v1 = v-P1 = 0.001010 m^3 / kg

       

       P2 = P3 = 8 MPa( Boiler pressure - Turbine inlet )

       s2 = s1 = 0.6492 KJ/kg.K   .... ( compressed liquid )

- To determine the ( h2 ) at state point 2 : Pump exit. We need to determine the wok-done by pump on the water ( Wp ). So from work-done principle we have:

   

                           w_p = v_1*( P_2 - P_1 )\\\\w_p = 0.001010*( 8000 - 10 )\\\\w_p = 8.0699 \frac{KJ}{kg}

- From the following relation we can determine ( h2 ) as follows:

                          h2 = h1 + wp

                          h2 = 191.81 + 8.0699

                          h2 = 199.88 KJ/kg

                           

Second Process: Boiler supplies heat to the fluid and vaporize

- We have already evaluated the inlet fluid properties to the boiler ( pump exit property ).

- To determine the exit property of the fluid when the fluid is vaporized to steam in boiler ( super-heated phase ).

              P3 = 8 MPa

              T3 = ?  ( assume fluid exist in the saturated vapor phase )

              h3 = hg-P3 = 2758.7 KJ/kg

              s3 = sg-P3 = 5.7450 KJ/kg.K

- The amount of heat supplied by the boiler per kg of fluid to the water stream. ( qs ) is determined using the state points 2 and 3 as follows:

                          q_s = h_3 - h_2\\\\q_s = 2758.7 -199.88\\\\q_s = 2558.82 \frac{KJ}{kg}

Third Process: The expansion ( actual case ). Turbine isentropic efficiency ( nt ).

- The saturated vapor steam is expanded by the turbine to the condenser pressure. The turbine inlet pressure conditions are similar to the boiler conditions.

- Under the isentropic conditions the steam exits the turbine at the following conditions:

             P4 = 10 KPa

             s4 = s3 = 5.7450 KJ/kg.K ... ( liquid - vapor mixture phase )

             

- Compute the quality of the mixture at condenser inlet by the following relation:

                           x = \frac{s_4 - s_f}{s_f_g} \\\\x = \frac{5.745- 0.6492}{7.4996} \\\\x = 0.67947

- Determine the isentropic ( h4s ) at this state as follows:

                          h_4_s = h_f + x*h_f_g\\\\h_4_s = 191.81 + 0.67947*2392.1\\\\h_4_s = 1817.170187 \frac{KJ}{kg}        

- Since, we know that the turbine is not 100% isentropic. We will use the working efficiency and determine the actual ( h4 ) at the condenser inlet state:

                         h4 = h_3 - n_t*(h_3 - h_4_s ) \\\\h4 = 2758.7 - 0.85*(2758.7 - 181.170187 ) \\\\h4 = 1958.39965 \frac{KJ}{kg} \\

- We can now compute the work-produced ( wt ) due to the expansion of steam in turbine.

                        w_t = h_3 - h_4\\\\w_t = 2758.7-1958.39965\\\\w_t = 800.30034 \frac{KJ}{kg}

- The net power out-put from the plant is derived from the net work produced by the compression and expansion process in pump and turbine, respectively.

                       W_n_e_t = flow(m) * ( w_t - w_p )\\\\flow ( m ) = \frac{W_n_e_t}{w_t - w_p} \\\\flow ( m ) = \frac{100000}{800.30034-8.0699} \\\\flow ( m ) = 126.23 \frac{kg}{s}

Answer: The mass flow rate of the steam would be 126.23 kg/s

- The thermal efficiency of the cycle ( nth ) is defined as the ratio of net work produced by the cycle ( Wnet ) and the heat supplied by the boiler to the water ( Qs ):

                        n_t_h = \frac{W_n_e_t}{flow(m)*q_s} \\\\n_t_h = \frac{100000}{126.23*2558.82} \\\\n_t_h = 0.31

Answer: The thermal efficiency of the cycle is 0.31

       

   

7 0
3 years ago
The drag force, Fd, imposed by the surrounding air on a
Ad libitum [116K]

Answer:

a)  23.551 hp

b)  516.89 hp

Explanation:

<u>given:</u>

F_{d} =\frac{1}{2} C_{d} A_{p} V^{2} \\V_{a}=25 m/hr-->25*\frac{5280}{3600} =36.67ft/s\\V_{b}=70 m/hr-->70*\frac{5280}{3600} =102.67ft/s\\\\C_{d}=.28\\A=25 ft^2\\p=.075lb/ft^2

<u>required:</u>

the power in hp

<u>solution:</u>

(F_{d})_{a}  =\frac{1}{2} C_{d} A_{p} V_{a} ^{2}.............(1)

by substituting in the equation (1)

         =353.27 lbf

(F_{d})_{b}  =\frac{1}{2} C_{d} A_{p} V_{b} ^{2}..........(2)

by substituting in the equation (2)

         = 2769.29 lbf

power is defined by

             P=F.V

     P_{a}=353.27*36.67

           =12954.411 lbf.ft/s

           =12954.411*.001818

           =23.551 hp

      P_{a}=2769.29*102.67

           = 284323 lbf.ft/s

           = 284323*.001818

           = 516.89 hp

3 0
3 years ago
Metal and dirt are not considered contaminants to oll.<br> A) O True<br> B) O False
Likurg_2 [28]

Answer:

true

Explanation:

6 0
2 years ago
Read 2 more answers
A 10 hp motor is used to raise a 1000 Newton weight at a vertical distance of 5 meters. What is the work the motor performs?
Aleksandr [31]

The work done by a 10 HP motor when it raises a 1000 Newton weight at a vertical distance of 5 meters is <u>5kJ</u>.

Define work. Explain the rate of doing work.

Work is <u>the energy that is moved to or from an item by applying force along a displacement</u> in physics. For a constant force acting in the same direction as the motion, work is <u>easiest expressed as the product of </u><u>force </u><u>magnitude and distance traveled</u>.

Since the <u>force </u><u>transfers one unit of energy for every unit of </u><u>work </u><u>it performs</u>, the rate at which work is done and energy is used are equal.

Solution Explained:

Given,

Weight = 1000N and distance = 5m

A/Q, the work here is done in lifting then

Work = (weight) × (distance moved)

         = 1000 X 5

         = 5000Nm or 5000J = 5kJ

Therefore, the work done in lifting a 1000 Newton weight at a vertical distance of 5 meters is 5kJ.

To learn more about work, use the link given
brainly.com/question/25573309
#SPJ9

<u />

4 0
1 year ago
How is the fuel introduced into the Diesel engine?
Ugo [173]

Answer:

diesel fuel is pumped at high pressure to the injectors which are responsible for entering the fuel into the combustion chamber,

when the piston is at the top the pressure is so high that it explodes the fuel (diesel) that results in a generation of mechanical power

5 0
3 years ago
Other questions:
  • According to Manor, the example of the subway train in New York City is an example of which type of uniqueness?
    9·1 answer
  • For a rod of annealed AISI 1018 steel with a cross sectional area of 0.65 in^2?; what is the maximum tensile load Pmax that shou
    10·1 answer
  • The costs of mining and transporting coal are roughly independent of the heating value of the coal. Consider:
    15·1 answer
  • What are your thoughts on physical education ?
    12·2 answers
  • With a brief description, What are the 14 principles of management by fayol.​
    10·1 answer
  • A(n) ____ is an exact representation of an object projected onto a plane from a specific position.
    14·1 answer
  • What material are the rocker/valve cover gaskets made out of?
    5·1 answer
  • Describe two other safe driver skills a driver should use when driving in this road condition
    7·1 answer
  • Do better then me......................................
    5·1 answer
  • PLEASE HELP QUICK!!
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!