1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
BartSMP [9]
3 years ago
5

A six-lane freeway (three lanes in each direction) currently operates at maximum LOS C conditions. The lanes are 11 ft wide, the

right-side shoulder is 4 ft wide, and there are two ramps within three miles upstream of the segment midpoint and one ramp within three miles downstream of the segment midpoint. The highway is on rolling terrain with 10% heavy vehicles, and the peak hour factor is 0.90. Determine the hourly volume for these conditions.
Engineering
1 answer:
Gelneren [198K]3 years ago
7 0

Answer:

4.071 veh/h.

Explanation:

Step one: calculate the estimated free flow speed by using the formula below;

= 75.4 - F(L) - F(C) - 3.22T^ 0.84.

The value of F(L) = 1.9 m/h and F(C) = 0.8 m/h.

Hence,

free flow speed = 75.4 - 1.9 - 0.8 - 3.22(3/6)^0.84.

free flow speed= 75.4 - 1.9 - 0.8 - 1.799

free flow speed= 70.901 mi/h = 70 mi/h.

Step two: determine the adjustment factor by using the formula below;

The adjustment factor = 1/ [1 + Pm (Em - 1) + Pn (En - 1)].

The adjustment factor = 1/[ 1+ 10/100 ( 2.5 - 1) + 0(2.0 - 1] = 0.869.

Step three;

Calculate the hourly volume;

The value corresponding to the LOS C conditions and free flow speed at 70 mi/h is 1735.

Therefore,

hourly volume, V = 1735 × 0.9 × 0.869 × 3.

Hourly volume, V = 4.071 veh/h.

You might be interested in
Question: 10 of 15
Anvisha [2.4K]

Answer:

Leg length

Explanation:

The distances from the root to the edges of the legs (toes) and the height of the crown are basic measurements.

3 0
3 years ago
Three tool materials (high-speed steel, cemented carbide, and ceramic) are to be compared for the same turning operation on a ba
Tpy6a [65]

Answer:

Among all three tools, the ceramic tool is taking the least time for the production of a batch, however, machining from the HSS tool is taking the highest time.

Explanation:

The optimum cutting speed for the minimum cost

V_{opt}= \frac{C}{\left[\left(T_c+\frac{C_e}{C_m}\right)\left(\frac{1}{n}-1\right)\right]^n}\;\cdots(i)

Where,

C,n = Taylor equation parameters

T_h =Tool changing time in minutes

C_e=Cost per grinding per edge

C_m= Machine and operator cost per minute

On comparing with the Taylor equation VT^n=C,

Tool life,

T= \left[ \left(T_t+\frac{C_e}{C_m}\right)\left(\frac{1}{n}-1\right)\right]}\;\cdots(ii)

Given that,  

Cost of operator and machine time=\$40/hr=\$0.667/min

Batch setting time = 2 hr

Part handling time: T_h=2.5 min

Part diameter: D=73 mm =73\times 10^{-3} m

Part length: l=250 mm=250\times 10^{-3} m

Feed: f=0.30 mm/rev= 0.3\times 10^{-3} m/rev

Depth of cut: d=3.5 mm

For the HSS tool:

Tool cost is $20 and it can be ground and reground 15 times and the grinding= $2/grind.

So, C_e= \$20/15+2=\$3.33/edge

Tool changing time, T_t=3 min.

C= 80 m/min

n=0.130

(a) From equation (i), cutting speed for the minimum cost:

V_{opt}= \frac {80}{\left[ \left(3+\frac{3.33}{0.667}\right)\left(\frac{1}{0.13}-1\right)\right]^{0.13}}

\Rightarrow 47.7 m/min

(b) From equation (ii), the tool life,

T=\left(3+\frac{3.33}{0.667}\right)\left(\frac{1}{0.13}-1\right)\right]}

\Rightarrow T=53.4 min

(c) Cycle time: T_c=T_h+T_m+\frac{T_t}{n_p}

where,

T_m= Machining time for one part

n_p= Number of pieces cut in one tool life

T_m= \frac{l}{fN} min, where N=\frac{V_{opt}}{\pi D} is the rpm of the spindle.

\Rightarrow T_m= \frac{\pi D l}{fV_{opt}}

\Rightarrow T_m=\frac{\pi \times 73 \times 250\times 10^{-6}}{0.3\times 10^{-3}\times 47.7}=4.01 min/pc

So, the number of parts produced in one tool life

n_p=\frac {T}{T_m}

\Rightarrow n_p=\frac {53.4}{4.01}=13.3

Round it to the lower integer

\Rightarrow n_p=13

So, the cycle time

T_c=2.5+4.01+\frac{3}{13}=6.74 min/pc

(d) Cost per production unit:

C_c= C_mT_c+\frac{C_e}{n_p}

\Rightarrow C_c=0.667\times6.74+\frac{3.33}{13}=\$4.75/pc

(e) Total time to complete the batch= Sum of setup time and production time for one batch

=2\times60+ {50\times 6.74}{50}=457 min=7.62 hr.

(f) The proportion of time spent actually cutting metal

=\frac{50\times4.01}{457}=0.4387=43.87\%

Now, for the cemented carbide tool:

Cost per edge,

C_e= \$8/6=\$1.33/edge

Tool changing time, T_t=1min

C= 650 m/min

n=0.30

(a) Cutting speed for the minimum cost:

V_{opt}= \frac {650}{\left[ \left(1+\frac{1.33}{0.667}\right)\left(\frac{1}{0.3}-1\right)\right]^{0.3}}=363m/min [from(i)]

(b) Tool life,

T=\left[ \left(1+\frac{1.33}{0.667}\right)\left(\frac{1}{0.3}-1\right)\right]=7min [from(ii)]

(c) Cycle time:

T_c=T_h+T_m+\frac{T_t}{n_p}

T_m= \frac{\pi D l}{fV_{opt}}

\Rightarrow T_m=\frac{\pi \times 73 \times 250\times 10^{-6}}{0.3\times 10^{-3}\times 363}=0.53min/pc

n_p=\frac {7}{0.53}=13.2

\Rightarrow n_p=13 [ nearest lower integer]

So, the cycle time

T_c=2.5+0.53+\frac{1}{13}=3.11 min/pc

(d) Cost per production unit:

C_c= C_mT_c+\frac{C_e}{n_p}

\Rightarrow C_c=0.667\times3.11+\frac{1.33}{13}=\$2.18/pc

(e) Total time to complete the batch=2\times60+ {50\times 3.11}{50}=275.5 min=4.59 hr.

(f) The proportion of time spent actually cutting metal

=\frac{50\times0.53}{275.5}=0.0962=9.62\%

Similarly, for the ceramic tool:

C_e= \$10/6=\$1.67/edge

T_t-1min

C= 3500 m/min

n=0.6

(a) Cutting speed:

V_{opt}= \frac {3500}{\left[ \left(1+\frac{1.67}{0.667}\right)\left(\frac{1}{0.6}-1\right)\right]^{0.6}}

\Rightarrow V_{opt}=2105 m/min

(b) Tool life,

T=\left[ \left(1+\frac{1.67}{0.667}\right)\left(\frac{1}{0.6}-1\right)\right]=2.33 min

(c) Cycle time:

T_c=T_h+T_m+\frac{T_t}{n_p}

\Rightarrow T_m=\frac{\pi \times 73 \times 250\times 10^{-6}}{0.3\times 10^{-3}\times 2105}=0.091 min/pc

n_p=\frac {2.33}{0.091}=25.6

\Rightarrow n_p=25 pc/tool\; life

So,

T_c=2.5+0.091+\frac{1}{25}=2.63 min/pc

(d) Cost per production unit:

C_c= C_mT_c+\frac{C_e}{n_p}

\Rightarrow C_c=0.667\times2.63+\frac{1.67}{25}=$1.82/pc

(e) Total time to complete the batch

=2\times60+ {50\times 2.63}=251.5 min=4.19 hr.

(f) The proportion of time spent actually cutting metal

=\frac{50\times0.091}{251.5}=0.0181=1.81\%

3 0
3 years ago
A 10.2 mm diameter steel circular rod is subjected to a tensile load that reduces its cross- sectional area to 52.7 mm^2. Determ
VMariaS [17]

Answer:

The percentage ductility is 35.5%.

Explanation:

Ductility is the ability of being deform under applied load. Ductility can measure by percentage elongation and percentage reduction in area. Here, percentage reduction in area method is taken to measure the ductility.

Step1

Given:

Diameter of shaft is 10.2 mm.

Final area of the shaft is 52.7 mm².

Calculation:

Step2

Initial area is calculated as follows:

A=\frac{\pi d^{2}}{4}

A=\frac{\pi\times(10.2)^{2}}{4}

A = 81.713 mm².

Step3

Percentage ductility is calculated as follows:

D=\frac{A_{i}-A_{f}}{A_{i}}\times100

D=\frac{81.713-52.7}{81.713}\times100

D = 35.5%.

Thus, the percentage ductility is 35.5%.

5 0
3 years ago
Describe the greatest power in design according to Aravena?
Ann [662]

Answer: Describe the greatest power in design according to Aravena? The subject of Aravena’s recent Futuna Lecture Series in New Zealand was ‘the power of design,’ which he described as ultimately being “the power of synthesis” because, increasingly, architects are dealing with complex issues and problems.

What are the three problems with global urbanization? 1. Degraded Environmental Quality ...

2. Overcrowding ...

3. Housing Problems ...

4. Unemployment ...

5. Development of Slums...

How could you use synthesis in your life to solve problems? Hence, synthesis is often not a one-time process of solution design but is used in combination with problem understanding and solution analysis to progress towards a more complete understanding of problems and solutions over time (see Applying the Systems Approach topic for a more complete discussion of the dynamics of this aspect of the approach).

I got all three answers

4 0
2 years ago
Soils with low percolation rates do not need special attention during site engineering. select one: true false
saveliy_v [14]

It is accurate to say that site engineering does not require particular consideration for soils with low percolation rates.

<h3>What are percolation rates?</h3>
  • The rate at which water percolates through the soil is a measure of its ability to absorb and treat effluent, or wastewater that has undergone preliminary treatment in a septic tank.
  • Minutes per inch are used to measure percolation rate (mpi).
  • The process of a liquid gently moving through a filter is called percolation. This is how coffee is typically brewed.
  • The Latin verb percolare, which meaning "to strain through," is the source of the word "percolation." When liquid is strained through a filter, such as when making coffee, percolation occurs.

To learn more about percolation rates, refer to:

brainly.com/question/28170860

#SPJ4

7 0
1 year ago
Other questions:
  • Which phrase best describes a safety-critical system? A. a system that faces a very high risk of failure B. a system isolated fr
    13·1 answer
  • Water flows at low speed through a circular tube with inside diameter of 2 in. A smoothly contoured body of 1.5 in. diameter is
    10·1 answer
  • The cables of a power line are copper-coated steel wire. The overall diameter of the wire is 5/8 in. The steel core has a diamet
    8·1 answer
  • What kind of volcano usually forms over a hot spot?
    15·2 answers
  • For ceramic-matrix composites, high interfacial strength is desirable. ( True , False )
    8·1 answer
  • In a surface grinding operation, the wheel diameter = 8.0 in, wheel width = 1.0 in, wheel speed = 6000 ft/min, work speed = 40 f
    9·1 answer
  • Who is???????????????????
    13·1 answer
  • In a device to produce drinking water, humid air at 320C, 90% relative humidity and 1 atm is cooled to 50C at constant pressure.
    14·1 answer
  • What is the minimum clamp time for gluing a panel?
    7·1 answer
  • Conclude from the scenario below which type of documentation Holly should use, and explain why this would be the best choice
    15·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!