Answer:
robotic technology
Explanation:
Innovation is nothing but the use of various things such as ideas, products, people to build up a solution for the benefit of the human. It can be any product or any solution which is new and can solve people's problems.
Innovation solution makes use of technology to provide and dispatch new solutions or services which is a combination of both technology and ideas.
One such example of an innovative solution we can see is the use of "Robots" in medical science or in any military operations or rescue operation.
Sometimes it is difficult for humans to do everything or go to everywhere. Thus scientist and engineers have developed many advance robots or machines using new ideas and technology to find solutions to these problems.
Using innovations and technologies, one can find solutions to many problems which is difficult for the peoples. Robots can be used in any surveillance operation or in places of radioactive surrounding where there is a danger of humans to get exposed to such threats. They are also used in medical sciences to operate and support the patient.
Answer:
a) 
b) attached below
c) type zero system
d) k > 
e) The gain K increases above % error as the steady state speed increases
Explanation:
Given data:
Motor voltage = 12 v
steady state speed = 200 rad/s
time taken to reach 63.2% = 1.2 seconds
<u>a) The transfer function of the motor from voltage to speed</u>
let ;
be the transfer function of a motor
when i/p = 12v then steady state speed ( k1 ) = 200 rad/s , St ( time constant ) = 1.2 sec
hence the transfer function of the motor from voltage to speed
= 
<u>b) draw the block diagram of the system with plant controller and the feedback path </u>
attached below is the remaining part of the detailed solution
c) The system is a type-zero system because the pole at the origin is zero
d) ) k > 
Answer:
0.024 m = 24.07 mm
Explanation:
1) Notation
= tensile stress = 200 Mpa
= plane strain fracture toughness= 55 Mpa
= length of a surface crack (Variable of interest)
2) Definition and Formulas
The Tensile strength is the ability of a material to withstand a pulling force. It is customarily measured in units (F/A), like the pressure. Is an important concept in engineering, especially in the fields of materials and structural engineering.
By definition we have the following formula for the tensile stress:
(1)
We are interested on the minimum length of a surface that will lead to a fracture, so we need to solve for 
Multiplying both sides of equation (1) by 
(2)
Sequaring both sides of equation (2):
(3)
Dividing both sides by
we got:
(4)
Replacing the values into equation (4) we got:
![\lambda=\frac{1}{\pi}[\frac{55 Mpa\sqrt{m}}{1.0(200Mpa)}]^2 =0.02407m](https://tex.z-dn.net/?f=%5Clambda%3D%5Cfrac%7B1%7D%7B%5Cpi%7D%5B%5Cfrac%7B55%20Mpa%5Csqrt%7Bm%7D%7D%7B1.0%28200Mpa%29%7D%5D%5E2%20%3D0.02407m)
3) Final solution
So the minimum length of a surface crack that will lead to fracture, would be 24.07 mm or more.
Answer:
835,175.68W
Explanation:
Calculation to determine the required power input to the pump
First step is to calculate the power needed
Using this formula
P=V*p*g*h
Where,
P represent power
V represent Volume flow rate =0.3 m³/s
p represent brine density=1050 kg/m³
g represent gravity=9.81m/s²
h represent height=200m
Let plug in the formula
P=0.3 m³/s *1050 kg/m³*9.81m/s² *200m
P=618,030 W
Now let calculate the required power input to the pump
Using this formula
Required power input=P/μ
Where,
P represent power=618,030 W
μ represent pump efficiency=74%
Let plug in the formula
Required power input=618,030W/0.74
Required power input=835,175.68W
Therefore the required power input to the pump will be 835,175.68W
Answer:
a) 5.2 kPa
b) 49.3%
Explanation:
Given data:
Thermal efficiency ( л ) = 56.9% = 0.569
minimum pressure ( P1 ) = 100 kpa
<u>a) Determine the pressure at inlet to expansion process</u>
P2 = ?
r = 1.4
efficiency = 1 - [ 1 / (rp)
]
0.569 = 1 - [ 1 / (rp)^0.4/1.4
1 - 0.569 = 1 / (rp)^0.285
∴ (rp)^0.285 = 0.431
rp = 0.0522
note : rp = P2 / P1
therefore P2 = rp * P1 = 0.0522 * 100 kpa
= 5.2 kPa
b) Thermal efficiency
Л = 1 - [ 1 / ( 10.9 )^0.285 ]
= 0.493 = 49.3%