Answer:
it is a force
Explanation:
a force is a push or a pull
When red light illuminates a grating with 7000 lines per centimeter, its second maximum is at 62.4°. What is the wavelength of this light?
ans: 633nm
Limited resources: resources that take a long time to replenish
Example: coal, oil, nuclear gas
Non- limited resource: resources that are constantly being replenished
Example: soil, wind, water
Answer:
Yes the body will receive a dangerous shock in both cases.
Explanation:
Different parts of the body has different resistance. skin has the high resistance as compared to other organs of the body.
Dry skin has high resistance than wet skin this is because water is relatively good conductor of electricity, it adds parallel path to the current flow and hence reduces skin resistance.
Dry hands body has approximately 500 kΩ resistance and if 120 V electricity supply current received will be:
I = V/R= 120/ 500*10^3
I= 0.24 mA
Even the current seems is much lower than the safe zone but this is the case in case of DC voltage in case of AC voltage the body will receive a shock this is because the skin pass more current when the voltage is changing i.e. AC.
Similarly for wet hands body resistance is 1 kΩ. so the current through the body seems to be:
I = 120 / 1000
I = 12 mA
The current is higher than safe zone so the body will receive a dangerous shock.
Answer:
15.07 ksi
Explanation:
Given that:
Pitch (P) = 5 teeth/in
Pressure angle (
) = 20°
Pinion speed (
) = 2000 rev/min
Power (H) = 30 hp
Teeth on gear (
) = 50
Teeth on pinion (
) = 20
Face width (F) = 1 in
Let us first determine the diameter (d) of the pinion.
Diameter (d) =
=
= 4 in
From the values of Lewis Form Factor Y for (
) = 20 ; at 20°
Y = 0.321
To find the velocity (V); we use the formula:


V = 2094.40 ft/min
For cut or milled profile; the velocity factor
can be determined as follows:


= 2.0472
However, there is need to get the value of the tangential load
, in order to achieve that, we have the following expression




Finally, the bending stress is calculated via the formula:



15.07 ksi
∴ The estimate of the bending stress = 15.07 ksi