Answer:
Q = C M T where C is the specific, M the mass, T the temperature change
Note 1 cal = 4.19 Joules
1562.75 J / (4.19 J/cal) = 378 cal
C = Q / (M * T) = 378 cal / (25.35 g * 155 deg C)
C = .096 cal / g deg C
Answer:
the car is going to same sped !
Explanation:
I just now luv
The answer would be B. :)
Answer:
a) 
b) 
c) 
d)
or 18.3 cm
Explanation:
For this case we have the following system with the forces on the figure attached.
We know that the spring compresses a total distance of x=0.10 m
Part a
The gravitational force is defined as mg so on this case the work donde by the gravity is:

Part b
For this case first we can convert the spring constant to N/m like this:

And the work donde by the spring on this case is given by:

Part c
We can assume that the initial velocity for the block is Vi and is at rest from the end of the movement. If we use balance of energy we got:

And if we solve for the initial velocity we got:

Part d
Let d1 represent the new maximum distance, in order to find it we know that :

And replacing we got:

And we can put the terms like this:

If we multiply all the equation by 2 we got:

Now we can replace the values and we got:


And solving the quadratic equation we got that the solution for
or 18.3 cm because the negative solution not make sense.
Period, T = 1/ f.
f = frequency = 200 Hz.
Period T = 1/200 = 0.005 seconds.