Answer:
Explanation:
When the central shaft rotates , the seat along with passenger also rotates . Their rotation requires a centripetal force of mw²R where m is mass of the passenger and w is the angular velocity and R is radius of the circle in which the passenger rotates.
This force is provided by a component of T , the tension in the rope from which the passenger hangs . If θ be the angle the rope makes with horizontal ,
T cos θ will provide the centripetal force . So
Tcosθ = mw²R
Tsinθ component will balance the weight .
Tsinθ = mg
Dividing the two equation
Tanθ = 
Hence for a given w , θ depends upon g or weight .
Answer:
The boiling point temperature of this substance when its pressure is 60 psia is 480.275 R
Explanation:
Given the data in the question;
Using the Clapeyron equation


where
is the change in enthalpy of saturated vapor to saturated liquid ( 250 Btu
T is the temperature ( 15 + 460 )R
m is the mass of water ( 0.5 Ibm )
is specific volume ( 1.5 ft³ )
we substitute
/
272.98 Ibf-ft²/R
Now,

where P₁ is the initial pressure ( 50 psia )
P₂ is the final pressure ( 60 psia )
T₁ is the initial temperature ( 15 + 460 )R
T₂ is the final temperature = ?
we substitute;


480.275 R
Therefore, boiling point temperature of this substance when its pressure is 60 psia is 480.275 R
Answer:

Explanation:
Kinematics equation for constant acceleration:
