Answer:
5.0 moles of water per one mole of anhydrate
Explanation:
To solve this question we must find the moles of the anhydrate. The difference in mass between the dry and the anhydrate gives the mass of water. Thus, we can find the moles of water and the moles of water per mole of anhydrate:
<em>Moles Anhydrate:</em>
7.58g * (1mol / 84.32g) = 0.0899 moles XCO3
<em>Moles water:</em>
15.67g - 7.58g = 8.09g * (1mol / 18.01g) = 0.449 moles H2O
Moles of water per mole of anhydrate:
0.449 moles H2O / 0.0899 moles XCO3 =
5.0 moles of water per one mole of anhydrate
Answer:
is insufficient to overcome intermolecular forces.
Explanation:
Answer:
is b
Explanation:
es la b porque estpy estudiando lo mismo
first find the atomic weight of CH3 which would be
atomic weight: 12.011 (3×1.008) = 36.32 g/mol
then find the moles in the given mass
36.32 ÷ 45.7 = 0.794
I HOPE I'M NOT WRONG I HAVENT DONE CHEM IN SO LONG
Answer:
daddadaddddddddddddddddddddddddddddda
Explanation:
dddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddd