1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
snow_tiger [21]
3 years ago
11

It is common to see birds of prey rising upward on thermals. The paths they take may be spiral-like. You can model the spiral mo

tion as uniform circular motion combined with a constant upward velocity. Assume a bird completes a circle of radius 6.00 m every 5.00 s and rises vertically at a rate of 3.00 m/s.
Physics
1 answer:
TiliK225 [7]3 years ago
6 0

Answer:

a) 8.115 m/s

b) 9.472 m/s^{2}

c) 21.7\°

Explanation:

The rest of the question is written below:

Determine (a) the bird’s speed relative to the ground; (b) the bird’s acceleration (magnitude and direction); and (c) the angle between the bird’s velocity vector and the horizontal.

<u>And we have the following data:</u>

r=6 m  is the radius of the circular path in the x-axis

T=5 s the period of the circular motion of the bird's path

V_{y}=3 m/s the vertical component of the bird's velocity, which is directed upward and is constant.

Now let's begin with the answers:

<h3>a) Bird’s speed relative to the ground</h3>

In order to find this speed, we have to calculate the magnitude of the bird's velocity vector:

V=sqrt{{V_{x}}^{2} + {V_{y}}^{2} (1)

We already know the value of V_{y}. So, we have to find V_{x}.

Since the bird is describing a circular path in the x-axis, V_{x} will be its <u>tangential velocity</u>:

V_{x}=\omega r=\frac{2 \pi}{T} r (2)

Where \omega=\frac{2 \pi}{T} is the <u>birds angular velocity</u>

V_{x}=\frac{2 \pi}{5 s} 6 m (3)

V_{x}=7.539 m/s (4)

Substituting (4) in (1):

V=sqrt{(7.539 m/s)}^{2} + (3 m/s)^{2} (5)

V=8.1147 m/s \approx 8.115 m/s (6) This is the bird's speed relative to the ground

<h3>b) Bird’s acceleration (magnitude and direction)</h3>

Since the vertical component of the bird's velocity is constant, the vertical component of its acceleration is zero:

a_{y}=0 m/s^{2}

However, the bird has radial acceleration a_{r}=a_{x} that results from its rotation on the circular path horizontally:

a_{x}=\frac{{V_{x}}^{2}}{r} (7)

a_{x}=\frac{(7.539 m/s)^{2}}{6 m} (8)

a_{x}=9.472 m/s^{2} (9) This is the magnitude of the bird's acceleration, which is directed to the center of the circular path the bird describes while it is moving upwards in the spiral.

<h3>c) Angle between the bird’s velocity vector and the horizontal</h3>

In order to find the direction of the bird's velocity vector with the horizontal, we have to find the angle between the horizontal and the vertical component of this velocity:

\theta=tan^{-1}(\frac{V_{y}}{V_{x}}) (10)

\theta=tan^{-1}(\frac{3 m/s}{7.539 m/s}) (11)

Finally:

\theta=21.69\° \approx 21.7 \° (12)

You might be interested in
Which statement is true of equinoxes? They occur in June and December. Days and nights are equal in length everywhere. The lengt
Zanzabum
<span>Days and nights are equal in length everywhere.(gradpoint)</span>
8 0
3 years ago
Read 2 more answers
suppose that 273 g of one of the substances listed above displaces 26 mL of water. What is the substance?
guajiro [1.7K]
<span>The unknown substance is silver. I don't see a list of available substances, but let's see if there's something reasonable available that will match. First, let's calculate the density of the unknown substance. Density is mass per volume, so 273 g / 26 mL = 10.5 g/mL Looking up a list of elements sorted by density, I see the following: 10.07 Actinium 10.22 Molybdenum 10.5 Silver 11.35 Lead And silver at 10.5 g/ml is a very nice match for the unknown substances' density of 10.5 g/ml.</span>
6 0
4 years ago
Read 2 more answers
Give an example of something you could do to reduce friction.
Archy [21]
Put oil on a table, that would reduce friction
5 0
3 years ago
Read 2 more answers
A plane opens a parachute after it lands inorder to
Elis [28]

Answer:

When the parachute opens, the air resistance increases. The skydiver slows down until a new, lower terminal velocity is reached.

8 0
2 years ago
Read 2 more answers
Use the given data to calculate the total mass of hydrogen available for fusion over the lifetime of the sun.
pogonyaev
Total mass of the Sun = 2x10^30kg 

<span>So 76% of that = (2x10^30kg)*(0.76) = 1.52x10^30kg ----> total amount of Hydrogen i</span><span>f only 12% of that is used for fusion, then (1.52x10^30kg)*(0.12) = 1.82x10^9kg</span>
8 0
3 years ago
Other questions:
  • A scientist notices that an oil slick floating on water when viewed from above has many different colors reflecting off the surf
    7·1 answer
  • What type of image is formed by a lens if m = -2.0?
    12·2 answers
  • What is the atomic number of the atom shown?<br><br>A)3B)13C)14D)27<br><br>​
    8·1 answer
  • 2. The components of vector A are given as follows:
    7·1 answer
  • Which of the following would be the best insulator? air aluminum copper silver
    9·1 answer
  • I NEED HELP PLEASE, THANKS! :) Why does the pattern of colors repeat in a thin soap film?
    6·1 answer
  • A car accelerates from rest at 5.75m/s2 for 4.4 sec when it runs out of pavement and runs into some mud. In the mud it accelerat
    6·1 answer
  • An object of mass 8kg is attached to massless string of length 2m and swum with a tangential velocity of 3 what is the tension o
    10·1 answer
  • Can someone please help me ?
    14·1 answer
  • give an example of one living and one non-living thing that uses the force of buoyancy to function. explain how they work.
    11·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!