Answer:
-58.876 kJ
Explanation:
m = mass of air = 1 kg
T₁ = Initial temperature = 15°C
T₂ = Final temperature = 97°C
Cp = Specific heat at constant pressure = 1.005 kJ/kgk
Cv = Specific heat at constant volume = 0.718 kJ/kgk
W = Work done
Q = Heat = 0 (since it is not mentioned we are considering adiabatic condition)
ΔU = Change in internal energy
Q = W+ΔU
⇒Q = W+mCvΔT
⇒0 = W+mCvΔT
⇒W = -mCvΔT
⇒Q = -1×0.718×(97-15)
⇒Q = -58.716 kJ
It was about 9:30 p.m. sorry if the answer is wrong
Answer:33
Explanation:
F = frequency
N = Node count
w = wave lenght
v = wave velocity
L = distance wave traveled
First find wave length of laser
w = (2/(N))*(L)
w = (2/(10))*(8)
w = 1.6
then using (w), find velocity
V = (w)(F)
V = (1.6)*(108)
V = 288
Plug in V and the new frequency to solve for new node count
F = NV/2L
(600) = (N)*(288) / 2 * (8)
(N) = 33.33
there are 33 nodes