Answer:
v = 719.2 m / s and a = 83.33 m / s²
Explanation:
This is a rocket propulsion system where the system is made up of the rocket plus the ejected mass, where the final velocity is
v - v₀ =
ln (M₀ / M)
where v₀ is the initial velocity, v_{e} the velocity of the gases with respect to the rocket and M₀ and M the initial and final masses of the rocket
In this case, if fuel burns at 75 kg / s, we can calculate the fuel burned for the 10 s
m_fuel = 75 10
m_fuel = 750 kg
As the rocket initially had a mass of 3000 kg including 1000 kg of fuel, there are still 250 kg, so the mass of the rocket minus the fuel burned is
M = 3000 -750 = 2250 kg
let's calculate
v - 0 = 2500 ln (3000/2250)
v = 719.2 m / s
To calculate the acceleration, let's use the concept of the rocket thrust, which is the force of the gases on it. In the case of the rocket, it is
Push = v_{e} dM / dt
let's calculate
Push = 2500 75
Push = 187500 N
If we use Newton's second law
F = m a
a = F / m
let's calculate
a = 187500/2250
a = 83.33 m / s²
Answer:
(a) 45 micro coulomb
(b) 6 micro Coulomb
Explanation:
C = 3 micro Farad = 3 x 10^-6 Farad
V = 15 V
(a) q = C x V
where, q be the charge.
q = 3 x 10^-6 x 15 = 45 x 10^-6 C = 45 micro coulomb
(b)
V = 2 V, C = 3 micro Farad = 3 x 10^-6 Farad
q = C x V
where, q be the charge.
q = 3 x 10^-6 x 2 = 6 x 10^-6 C = 6 micro coulomb
Answer:

Explanation:
When a spring is compressed, the force exerted by the spring is given by:

where
k is the spring constant
x is the compression of the spring
In this problem we have:
k = 52 N/m is the spring constant
x = 43 cm = 0.43 m is the compression
Therefore, the force exerted by the spring on the dart is

Now we can apply Newton' second law of motion to calculate the acceleration of the dart:

where
F = 22.4 N is the force exerted on the dart by the spring
m = 75 g = 0.075 kg is the mass of the dart
a is its acceleration
Solving for a,
