Answer:

Explanation:
= Length of wire = 65 m
= Initial current = 1.8 A
= Final current = 2.9 A
We know

and


so

The length of the wire remaining on the spool is
.
Answer:
(d) A strong electron-phonon interaction
Explanation:
Superconductivity -
The phenomenon of superconductivity is due to the attractive force between electrons from the exchange of the phonons that cause the bound pair of electrons known as cooper pairs .
A strong electron -phonon intercation is suitable condition for superconductivity and high resistance .
Answer:
option (a)
Explanation:
To make a galvanometer into voltmeter, we have to connect a high resistance in series combination.
The voltmeter is connected in parallel combination with teh resistor to find the voltage drop across it.
An ideal voltmeter has very high resistance that means it has a resistance as infinity.
The sun's intensity for an outer planet located at a distance 6r from the sun is 5.55 W/m². The result is obtained by using the inverse square law formula.
<h3>What is the Inverse Square Law formula?</h3>
The Inverse Square Law formula describes the intensity of light is inversely proportional to the square of the distance. It can be expressed as

Where
- I₁ = Intensity at distance 1 (W/m²)
- I₂ = Intensity at distance 2 (W/m²)
- d₁ = distance 1 from a light source (m)
- d₂ = distance 2 from a light source (m)
Given the case the sun's intensity is 200 W/m² for an inner planet at the distance r. If an outer planet is at a distance 6r, what is the sun's intensity?
By using the inverse square law formula, the sun's intensity for an outer planet is




I₂ = 5.55 W/m²
Hence, the sun's intensity for a planet at a distance 6r from the sun is 5.55 W/m².
Learn more about intensity of light here:
brainly.com/question/13155277
#SPJ4
Answer:
(a): the mug hits the floor 0.752m away from the end of the bar.
(b): the speed of the mug at impact are:
V= 4.87 m/s
direction= 70.82º below the horizontal.
Explanation:
Vx= 1.6 m/s
Vy=?
h= 1.1 m
g= 9.8 m/s²
t is the fall time

t=0.47 sec
Vy= g*t
Vy= 4.6 m/s

V= 4.87 m/s
α= tan⁻¹(Vy/Vx)
α= -70.82º