Answer:
The work done by the applied force is 259.22 J.
Explanation:
The work done by the applied force is given by:

Where:
F: is the applied horizontal force = 108.915 N
d: is the distance = 2.38 m
Hence, the work is:

Therefore, the work done by the applied force is 259.22 J.
I hope it helps you!
In this exercise we have to know the definition of energy to understand what is transferred to a body, like this:
Work
<h2>What is energy?</h2>
Despite being used in many different contexts, the scientific use of the word energy has a well-defined and precise meaning: Innate potential to perform work or perform an action. Anything that is working, moving another object, or heating it up, for example, is expending (transferring) energy.
With this definition we can say that the only alternative that responds to this is work.
See more about energy at brainly.com/question/1932868
For the answer to the question above, each horse's force forms a right angle triangle with the barge and subtends an angle of 60/2 = 30°. The resultant in the direction of the barge's motion is:
Fx = Fcos(∅)
We can multiply this by 2 to find the resultant of both horses.
Fx = 2Fcos(∅)
Fx = 2 x 720cos(30)
Fx = 1247 N
Answer:
The magnitude of the change in momentum of the stone is 5.51kg*m/s.
Explanation:
the final kinetic energy = 1/2(0.15)v^2
1/2(0.15)v^2 = 70%*1/2(0.15)(20)^2
v^2 = 21/0.075
v^2 = 280
v = 16.73 m.s
if u is the initial speed and v is the final speed, then:
u = 20 m/s and v = - 16.73m/s
change in momentum = m(v-u)
= 0.15(- 16.73-20)
= -5.51 kg*m.s
Therefore, The magnitude of the change in momentum of the stone is 5.51kg*m/s.