More cool stars produce much of their light in the red part of the spectrum, so you see them, and bam, the color red. More hot stars, however, produce much more of their light in the green and or yellow spectrums, with much more tinier amounts of red / blue. This balance of the colors, your eye, sees simply as white. The more hot something is, the greater frequency of radiation it produces! Blue light has a higher frequency than red light, so the stars that glow red are cooler, than the stars that glow blue. :)
Hope this helped!
Answer:
The differences that will be observed are;
1) The Sun will become faint and will no longer be yellow but rather appear white and will no longer be visible (become invisible) by unassisted vision as we can see the Sun today
2) The size of the Sun will shrink to a size comparable to the size of the Earth
3) The Sun will cool down and will no longer radiate as much heat
4) The nuclear reactions that generate energy on the Sun's will seize and the and the heat from the Sun will be from residual thermal energy
5) The core, which is the hottest part of the Sun will no longer be hydrogen but carbon and oxygen
Explanation:
Answer:0.253Joules
Explanation:
First, we will calculate the force required to stretch the string. According to Hooke's law, the force applied to an elastic material or string is directly proportional to its extension.
F = ke where;
F is the force
k is spring constant = 34N/m
e is the extension = 0.12m
F = 34× 0.12 = 4.08N
To get work done,
Work is said to be done if the force applied to an object cause the body to move a distance from its initial position.
Work done = Force × Distance
Since F = 4.08m, distance = 0.062m
Work done = 4.08 × 0.062
Work done = 0.253Joules
Therefore, work done to stretch the string to an additional 0.062 m distance is 0.253Joules