Since the reaction gives off heat energy it is considered to be an exothermic reaction
Answer:
97 000 g Na
Explanation:
The absortion (or liberation) of energy in form of heat is expressed by:
q=m*Cp*ΔT
The information we have:
q=1.30MJ= 1.30*10^6 J
ΔT = 10.0°C = 10.0 K (ΔT is the same in °C than in K)
Cp=30.8 J/(K mol Na)
If you notice, the Cp in the question is in relation with mol of Na. Before using the q equation, we can find the Cp in relation to the grams of Na.
To do so, we use the molar mass of Na= 22.99g/mol

Now, we are able to solve for m:
=97 000 g Na
4/325 = 2/unknown temperature
unknown temperature= 2/(4/325)=162.5k
Answer:
The initial temperature of the metal is 84.149 °C.
Explanation:
The heat lost by the metal will be equivalent to the heat gain by the water.
- (msΔT)metal = (msΔT)water
-32.5 grams × 0.365 J/g°C × ΔT = 105.3 grams × 4.18 J/g °C × (17.3 -15.4)°C
-ΔT = 836.29/12.51 °C
-ΔT = 66.89 °C
-(T final - T initial) = 66.89 °C
T initial = 66.89 °C + T final
T initial = 66.89 °C + 17.3 °C
T initial = 84.149 °C.
Environmental Hazards are usually any chemicals that donot naturally occur to exist anywhere and are usually made in the fields of industry or experimental sciences
So if you happen for example to throw a bit of mercury in some river while being in a school trip then this is an environmental hazard created by humans