Answer:
2.55 × 10³ J =2.55 kJ
Explanation:
Specific heat capacity of ice = 37.8 J / mol °C
Specific heat capacity of water = 76.0 J/ mol °C
Ice at -12 °C is converted to ice at 0 °C by absorbing heat Q₁
Ice at 0°C melts to water at 0 °C. Let Heat absorbed during this phase change be Q₂ .
Let heat absorbed to raise the temperature of water from 0 C to 24°C be Q₃ .
Total heat = Q = Q₁ + Q₂ + Q₃
Q₁ = (37.8 j/mol C )(5.53 g /18.01532 g/ mol )( 0-(-12)) = 139.23749 j
Q₂ =(5.53 g/18.01532 g H₂O / mol ) (6.02 x10³ j) = 1847.905 j
Q₃ = (76 j/mol C) ( (5.53 g/18.01532 g H₂O / mol )(24-0) = 559.8968 j
Total Heat required = Q = 139.23749 j + 1847.905 j + 559.8968 j
= 2547.039 j = 2.55 × 10³ J =2.55 kJ
Answer:
The quantity of motion is the measure of the same, arise from the velocity and quantity of matter conjointly. In other words, rather than defining the quantity of motion of a given object as simply the kinematic velocity v of the object, he defined it as the product mv, where m is the mass of the object.
Explanation:
"Dispersion forces" is the one intermolecular force among the following choices given in the question that <span>explains why iodine (I2) is a solid at room temperature. The correct option among all the options that are given in the question is the third option or the penultimate option. I hope that the answer has helped you.</span>
The process of arriving at a general conclusion based on the observation of specific examples is called inductive reasoning. It is a logical process where multiple premises are combined to obtain a conclusion. It is <span>used in applications that involve prediction and forecasting.</span>
We make a graphic of this problem to define the angle.
The angle we can calculate through triangle relation, that is,

With this function we should only calculate the derivate in function of c

That is the rate of change of
.
b) At this point we need only make a substitution of 0 for c in the equation previously found.

Hence we have finally the rate of change when c=0.