Answer:
Δω = -5.4 rad/s
αav = -3.6 rad/s²
Explanation:
<u>Given</u>:
Initial angular velocity = ωi = 2.70 rad/s
Final angular velocity = ωf = -2.70 rad/s (negative sign is
due to the movement in opposite direction)
Change in time period = Δt = 1.50 s
<u>Required</u>:
Change in angular velocity = Δω = ?
Average angular acceleration = αav = ?
<u>Solution</u>:
<u>Angular velocity (Δω):</u>
Δω = ωf - ωi
Δω = -2.70 - 2.70
Δω = -5.4 rad/s.
<u> Average angular acceleration (αav):</u>
αav = Δω/Δt
αav = -5.4/1.50
αav = -3.6 rad/s²
Since, the angular velocity is decreasing from 2.70 rad/s (in counter clockwise direction) to rest and then to -2.70 rad/s (in clockwise direction) so, the change in angular velocity is negative.
Answer: Your answer is<u> 1.36.</u>
Hope this helps!
<span>D. Convection occurs when heated particles of a material flow toward areas having less thermal energy. This movement of particles can only occur in gases and liquids, not solids.</span>
The speed and distances are directly proportional. Use ratios to solve for vertical y-distance. The ratio of x-distance west to y-distance north equals the x-velocity to y-velocity.
x/y = vx/vy
41/y = 8.6/5.2
41/y = 1.65
41/1.65 = y
24.8 m = y
Answer:

Explanation:
= Initial pressure = 
= Initial volume
= Final volume = 
Temperature is the same in the initial and final state
From the ideal gas law we have

The final pressure of the system is
.