Answer:


Given:
Initial velocity (u) = 0 m/s
Final velocity (v) = 20 m/s
Time taken (t) = 10 sec
To Find:
(i) Acceleration (a)
(ii) Distance covered (s)
Explanation:












Answer:
100,048
Explanation:
K.E = 1/2 m (v)^2
K.E = 1^/2 * 74 * (52)^2
K.E = 100,048J =100.048kJ
O.99 m long .simple pendulum time period is 2s for second formula then use formula T=2pi.rt(lenght/gravity)
The loss of matter is called the mass defect. The missing matter is converted into energy. You can actually calculate the amount of energy produced during a nuclear reaction with fairly simple equation developed by Albert Einstein; E = mc^2. In this equation, E is the amount of energy produced, m is the missing mass, or the mass defect, and c is the speed of light, which is a rather large number. The speed of light is squared, making that part of the equation a very large number that, even when multiplied by a small amount of mass, yields a large amount of energy.
Answer:
move the wire loops closer
Explanation:
because the closer t they are the more concentrated the energy is in that specific area