1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
sveticcg [70]
1 year ago
5

Which equation describes the sum of the vectors plotted below?

Physics
1 answer:
bearhunter [10]1 year ago
8 0

Equation C describes the sum of the vectors plotted below.

<h3>What is a vector?</h3>

A vector is a quantity or phenomena with magnitude and direction that are independent of one another. The phrase also refers to a quantity's mathematical or geometrical representation.

If no vector can be written as a linear combination of the others, a set of vectors is said to be linearly independent.

The given points from the graph is obtained as;

a = (2,1)

b = (3,-2)

Vector, OA = 2x + y

Vector, AB = x - 3 y

From the triangular lawe of the vector addition;

\rm r=  \vec{OA} +\vec{OB}\\\\\ r= 2x+y+x-3y \\\\ r= 3x-2y

Hence,option C is correct.

To learn more about the vector refer to the link;

brainly.com/question/13322477

#SPJ1

You might be interested in
4.77 Augment the rectifier circuit of Problem 4.70 with a capacitor chosen to provide a peak-to-peak ripple voltage of (i) 10% o
goblinko [34]

The question incomplete! The complete question along with answer and explanation is provided below.

Question:

Augment the rectifier circuit of Problem 4.68 with a  capacitor chosen to provide a peak-to-peak ripple voltage of  (i) 10% of the peak output and (ii) 1% of the peak output. In  each case:

(a) What average output voltage results?

(b) What fraction of the cycle does the diode conduct?

(c) What is the average diode current?

(d) What is the peak diode current?

Problem 4.68:

A half-wave rectifier circuit with a 1-kΩ load operates from a 120-V (rms) 60-Hz household supply through  a 10-to-1 step-down transformer. It uses a silicon diode  that can be modeled to have a 0.7-V drop for any current.

Given Information:

Input voltage = 120 Vrms

10 to 1 step-down transformer

Voltage drop at diode = 0.7 V

Load resistance = R = 1 kΩ

Required Information:

 (i) 10% of the peak output and (ii) 1% of the peak output. In  each case:

(a) What average output voltage results?

(b) What fraction of the cycle does the diode conduct?

(c) What is the average diode current?

(d) What is the peak diode current?

Answer:

Case (i)

Vavg = 15.45 V

Conduction of diode = 7.11 %

Iavg = 0.232 A

Ip = 0.449 A

Case (ii)

Vavg = 16.18 V

Conduction of diode = 2.25 %

Iavg = 0.735 A

Ip = 1.453 A

Explanation:

Voltage at the secondary side of the transformer is

Vrms = Vpri/turn ratio

Vrms = 120/10 = 12 V

The relation between rms voltage and peak voltage is

Vp = Vrms/√2

Vp = 12√2 = 16.97 V

Vd = 0.7 V

First we will calculate all the required parameters for the 10% ripple voltage and then for 1% ripple voltage.

case (i) 10% of the peak output:

(a) What average output voltage results?

Average output voltage = Vavg = Vp - Vd - 0.5Vr

Where Vp is the peak output voltage Vd is the voltage drop of diode and Vr is the ripple voltage which is given as a percentage of Vp

Vavg = Vp - Vd - 0.5Vr

Vavg = 16.97 - 0.7 - 0.5[0.1(16.97 - 0.7)]

Vavg = 15.45 V

(b) What fraction of the cycle does the diode conduct?

ω = √2Vr/Vp - Vd

ω = √2*0.1(Vp-Vd)/Vp - Vd

ω = √2*0.1(16.97-0.7)/16.97 - 0.7

ω = 0.447 rad

Conduction of diode = (ω/2π)*100

Conduction of diode = (0.447/2π)*100

Conduction of diode = 7.11 %

(c) What is the average diode current?

Average current = Iavg = Vavg/R[ 1 + π( √2(Vp - Vd)/0.1(Vp-Vd))]

Average current = Iavg = 15.45/1000[ 1 + π( √2(16.97 - 0.7)/0.1(16.97-0.7))]

Average current = Iavg = 0.232 A

(d) What is the peak diode current?

Peak current = Ip = Vavg/R[ 1 + 2π( √2(Vp - Vd)/0.1(Vp-Vd))]

Peak current = Ip = 15.45/1000[ 1 + 2π( √2(16.97 - 0.7)/0.1(16.97-0.7))]

Peak current = Ip = 0.449 A

case (ii) 1% of the peak output:

(a) What average output voltage results?

Vavg = 16.97 - 0.7 - 0.5[0.01(16.97 - 0.7)]

Vavg = 16.18 V

(b) What fraction of the cycle does the diode conduct?

ω = √2*0.01(Vp-Vd)/Vp - Vd

ω = √2*0.01(16.97-0.7)/16.97 - 0.7

ω = 0.1417 rad

Conduction of diode = (0.1417/2π)*100

Conduction of diode = 2.25 %

(c) What is the average diode current?

Average current = Iavg = 16.18/1000[ 1 + π( √2(16.97 - 0.7)/0.01(16.97-0.7))]

Average current = Iavg = 0.735 A

(d) What is the peak diode current?

Peak current = Ip = 16.18/1000[ 1 + 2π( √2(16.97 - 0.7)/0.01(16.97-0.7))]

Peak current = Ip = 1.453 A

3 0
3 years ago
You walk with a velocity of 2 m/s north. You see a man approaching you, and from your frame of
solong [7]

Answer:

The velocity of the man from the frame of  reference of a stationary observer is, V₂ = 5 m/s

Explanation:

Given,

Your velocity, V₁ = 2 m/

The velocity of the person, V₂ =?

The velocity of the person relative to you, V₂₁ = 3 m/s

According to the relative velocity of two

                                V₂₁ = V₂ -V₁

∴                               V₂ =  V₂₁ + V₁

On substitution

                                 V₂ = 3 + 2

                                      = 5 m/s

Hence, the velocity of the man from the frame of reference of a stationary observe is, V₂ = 5 m/s

8 0
3 years ago
A boat sails along the shore. To an observer, the boat appears to move at a speed of 22 m/s, and a man on the boat walking forwa
seropon [69]
The boat is moving at 22 m/s while the man is moving at 23.1 m/s.

That means the man, relative to the boat, is moving at 23.1-22 = 1.1 m/s.

v =d/t, so t = d/v --> t = 3/1.1 = 2.7 s
7 0
2 years ago
"Force is applied to an object and the object is moved over a distance in the same direction of the applied force" is the defini
DaniilM [7]
I believe this is gravitational force

8 0
3 years ago
Read 2 more answers
If two charged objects each have 2.5 C of charge on them and are located 100 m apart, how strong is the electrostatic force betw
LiRa [457]

Answer:

5.619×10⁶ N

Explanation:

Applying,

F = kqq'/r²................... Equation 1

Where F = electrostatic force between the charges, k = coulomb's constant, q = first charge, q' = second charge, r = distance btween the charges

From the questiion,

Given: q = 2.5 C, q' = 2.5 C, r = 100 m

Constant: 8.99×10⁹ Nm²/C²

Substitute these values into equation 1

F = (2.5×2.5×8.99×10⁹)/100²

F = 56.19×10⁵

F = 5.619×10⁶ N

4 0
2 years ago
Other questions:
  • All chordates are vertebrates?<br> A. True <br> B. False
    6·2 answers
  • With a frequency of 500 hz, what is the period of a wave
    9·1 answer
  • What unit is used to measure<br> wavelength?
    9·2 answers
  • What is the main idea of quantum psychics?
    8·1 answer
  • a uniform rod of length 1.5m is placed over a wedge at 0.5m from one end .a force of 100 N is applied at its one end near the we
    14·1 answer
  • Waves do NOT carry.<br><br> A)Weight<br> B)Matter<br> C)Energy<br> D)Color<br> (Choose one)
    12·1 answer
  • What does the narrator mean when he says that energy is “as old as time itsself “
    10·1 answer
  • Which of the following has the greatest momentum?
    6·1 answer
  • True or false?
    13·2 answers
  • What happens to the heat energy when you increase the length of an object​
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!