
According to above question ~
Let's find the charge (q) by using formula ~
Hence, 12 coulombs of charge flow past any point in the wire in 3 seconds
Groundwater is the water found underground in the cracks and spaces in soil, sand and rock. It is stored in and moves slowly through geologic formations of soil, sand and rocks called aquifers.
Hope this helps.
Please mark as brainliest..........
Newton's first law of motion best illustrates the principle of inertia<span />
Answer:
Cerebral palsy
Explanation:
Cerebral palsy - it is referred to that disorder which is related to damages that caused permanent disorder in the functioning of body parts. it affects the proper functioning of muscles thus cause the coordination problem.
it is caused due to abnormalities in the brain that result in the coordination of the body. As it is related to abnormalities in the brain thus it also causes a problem in vision, speaking, hearing, etc
Answer:
The upper limit on the flow rate = 39.46 ft³/hr
Explanation:
Using Ergun Equation to calculate the pressure drop across packed bed;
we have:

where;
L = length of the bed
= viscosity
U = superficial velocity
= void fraction
dp = equivalent spherical diameter of bed material (m)
= liquid density (kg/m³)
However, since U ∝ Q and all parameters are constant ; we can write our equation to be :
ΔP = AQ + BQ²
where;
ΔP = pressure drop
Q = flow rate
Given that:
9.6 = A12 + B12²
Then
12A + 144B = 9.6 -------------- equation (1)
24A + 576B = 24.1 --------------- equation (2)
Using elimination methos; from equation (1); we first multiply it by 2 and then subtract it from equation 2 afterwards ; So
288 B = 4.9
B = 0.017014
From equation (1)
12A + 144B = 9.6
12A + 144(0.017014) = 9.6
12 A = 9.6 - 144(0.017014)

A = 0.5958
Thus;
ΔP = AQ + BQ²
Given that ΔP = 50 psi
Then
50 = 0.5958 Q + 0.017014 Q²
Dividing by the smallest value and then rearranging to a form of quadratic equation; we have;
Q² + 35.02Q - 2938.8 = 0
Solving the quadratic equation and taking consideration of the positive value for the upper limit of the flow rate ;
Q = 39.46 ft³/hr