Answer:
c. both have same energy
Explanation:
The complete question is
suppose you have two cans, one with milk, and the other with refried beans. The cans have essentially the same size, shape, and mass. If you release both cans at the same time, on a downhill ramp, which can has more energy at the bottom of the ramp? ignore friction and air resistance..
a. can with beans
b. can with milk
c. both have same energy
please explain your answer
Since both cans have the same size, shape, and mass, and they are released at the same height above the ramp, they'll possess the same amount of mechanical energy. This is because their mechanical energy, which is the combination of their potential and kinetic energy are both dependent on their mass. Also, having the same physical quantities like their size and shape means that they will experience the same environmental or physical factors, which will be balanced for both.
Answer:

Explanation:
A charge located at a point will experience a zero electrostatic force if the resultant electric field on it due to any other charge(s) is zero.
is located at the origin. The net force on it will only be zero if the resultant electric field intensity due to
and
at the origin is equal to zero. Therefore we can perform this solution without necessarily needing the value of
.
Let the electric field intensity due to
be +
and that due to
be -
since the charge is negative. Hence at the origin;

From equation (1) above, we obtain the following;

From Coulomb's law the following relationship holds;

where
is the distance of
from the origin,
is the distance of
from the origin and k is the electrostatic constant.
It therefore means that from equation (2) we can write the following;

k can cancel out from both side of equation (3), so that we finally obtain the following;

Given;

Substituting these values into equation (4); we obtain the following;


Answer:
If it is triple it means we multiply it by 3 then it is 36.3 m/s/s
Answer:
T=1.384×10⁶seconds
Explanation:
Given data
p (Intensity)=1.30 kw/m²
E (Energy)=1.8×10⁹ J
A (Area)=1.00 m²
T (Time required)=?
Solution
E=PT ................eq(i)
where E is energy
P is radiation power
T is time
Radiating Power is given as
P=pA
Where p is intensity
A is Area
Put P=pA in eq(i) we get
E=pAT
T=E/pA

heya mate
the planet Jupiter has most gravity due to its size