1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
yaroslaw [1]
3 years ago
7

An electron is fired horizontally at 2.5 x 10 m/s between two horizontal parallel plates 7.5 cm long, as shown in the diagram. T

he magnitude of the electric field is 130 N/C. The plate separation is great enough to allow the electron to escape. Edge effects and gravitation are negligible. Find the velocity of the electron as it escapes from between the plates.
Physics
1 answer:
DochEvi [55]3 years ago
8 0

Answer:

the answer to your question is 2.5

Explanation:

You might be interested in
Three point charges are fixed in place in a right triangle, as shown in the figure.
8090 [49]
Oh gosh oh I see it in my life face and
4 0
3 years ago
Physics B 2020 Unit 3 Test
weqwewe [10]

Answer:

1)

When a charge is in motion in a magnetic field, the charge experiences a force of magnitude

F=qvB sin \theta

where here:

For the proton in this problem:

q=1.602\cdot 10^{-19}C is the charge of the proton

v = 300 m/s is the speed of the proton

B = 19 T is the magnetic field

\theta=65^{\circ} is the angle between the directions of v and B

So the force is

F=(1.602\cdot 10^{-19})(300)(19)(sin 65^{\circ})=8.28\cdot 10^{-16} N

2)

The magnetic field produced by a bar magnet has field lines going from the North pole towards the South Pole.

The density of the field lines at any point tells how strong is the magnetic field at that point.

If we observe the field lines around a magnet, we observe that:

- The density of field lines is higher near the Poles

- The density of field lines is lower far from the Poles

Therefore, this means that the magnetic field of a magnet is stronger near the North and South Pole.

3)

The right hand rule gives the direction of the  force experienced by a charged particle moving in a magnetic field.

It can be applied as follows:

- Direction of index finger = direction of motion of the charge

- Direction of middle finger = direction of magnetic field

- Direction of thumb = direction of the force (for a negative charge, the direction must be reversed)

In this problem:

- Direction of motion = to the right (index finger)

- Direction of field = downward (middle finger)

- Direction of force = into the screen (thumb)

4)

The radius of a particle moving in a magnetic field is given by:

r=\frac{mv}{qB}

where here we have:

m=6.64\cdot 10^{-22} kg is the mass of the alpha particle

v=2155 m/s is the speed of the alpha particle

q=2\cdot 1.602\cdot 10^{-19}=3.204\cdot 10^{-19}C is the charge of the alpha particle

B = 12.2 T is the strength of the magnetic field

Substituting, we find:

r=\frac{(6.64\cdot 10^{-22})(2155)}{(3.204\cdot 10^{-19})(12.2)}=0.366 m

5)

The cyclotron frequency of a charged particle in circular motion in a magnetic field is:

f=\frac{qB}{2\pi m}

where here:

q=1.602\cdot 10^{-19}C is the charge of the electron

B = 0.0045 T is the strength of the magnetic field

m=9.31\cdot 10^{-31} kg is the mass of the electron

Substituting, we find:

f=\frac{(1.602\cdot 10^{-19})(0.0045)}{2\pi (9.31\cdot 10^{-31})}=1.23\cdot 10^8 Hz

6)

When a charged particle moves in a magnetic field, its path has a helical shape, because it is the composition of two motions:

1- A uniform motion in a certain direction

2- A circular motion in the direction perpendicular to the magnetic field

The second motion is due to the presence of the magnetic force. However, we know that the direction of the magnetic force depends on the sign of the charge: when the sign of the charge is changed, the direction of the force is reversed.

Therefore in this case, when the particle gains the opposite charge, the circular motion 2) changes sign, so the path will remains helical, but it reverses direction.

7)

The electromotive force induced in a conducting loop due to electromagnetic induction is given by Faraday-Newmann-Lenz:

\epsilon=-\frac{N\Delta \Phi}{\Delta t}

where

N is the number of turns in the loop

\Delta \Phi is the change in magnetic flux through the loop

\Delta t is the time elapsed

From the formula, we see that the emf is induced in the loop (and so, a current is also induced) only if \Delta \Phi \neq 0, which means only if there is a change in magnetic flux through the loop: this occurs if the magnetic field is changing, or if the area of the loop is changing, or if the angle between the loop and the field is changing.

8)

The flux is calculated as

\Phi = BA sin \theta

where

B = 5.5 T is the strength of the magnetic field

A is the area of the coil

\theta=18^{\circ} is the angle between the  direction of the field and the plane of the loop

Here the loop is rectangular with lenght 15 cm and width 8 cm, so the area is

A=(0.15 m)(0.08 m)=0.012 m^2

So the flux is

\Phi = (5.5)(0.012)(sin 18^{\circ})=0.021 Wb

See the last 7 answers in the attached document.

Download docx
<span class="sg-text sg-text--link sg-text--bold sg-text--link-disabled sg-text--blue-dark"> docx </span>
<span class="sg-text sg-text--link sg-text--bold sg-text--link-disabled sg-text--blue-dark"> pdf </span>
5 0
3 years ago
Can someone help me?​
Leviafan [203]

Car X traveled 3d distance in t time.  Car Y traveled 2d distance in t time. Therefore, the speed of car X, is 3d/t,  the speed of car Y, is 2d/t. Since speed is the distance taken in a given time.

In figure-2, they are at the same place, we are asked to find car Y's position when car X is at line-A. We can calculate the time car X needs to travel to there. Let's say that car X reaches line-A in t' time.

V_x .t' = 3d\\ \frac{3d}{t} .t' = 3d\\ t'=t

Okay, it takes t time for car X to reach line-A. Let's see how far does car Y goes.

V_y.t = \frac{2d}{t} .t = 2d

We found that car Y travels 2d distance. So, when car X reaches line-A, car Y is just a d distance behind car X.

4 0
3 years ago
A cathode ray tube is made of glass with a small amount of some kind of gas in it. It has metal electrodes at each end to pick u
LuckyWell [14K]
Scientists could investigate this idea by making cathode ray tubes out of different materials to see if the ray was the same.
6 0
3 years ago
Read 2 more answers
39. Draw a complete free body diagram of a 40 kg plastic crate at rest on a wooden table (us=0.7). The applied force to the righ
Leya [2.2K]

In order to draw the free body diagram, first let's calculate the friction force acting on the crate:

\begin{gathered} F_f=N\cdot\mu \\ F_f=40\cdot9.8\cdot0.7 \\ F_f=274.4\text{ N} \end{gathered}

Since the friction force is greater than the force applied, the crate will not move, and the friction force will be equal to the force applied.

The weight force is equal to 40 * 9.8 = 392 N.

So, drawing the diagram, we have:

4 0
1 year ago
Other questions:
  • A current of 3.60A flows for 15.3s through a conductor. Calculate the number of electrons that pass through a point in the condu
    15·1 answer
  • The strength of the electric field 0.5 m from a 6 uC charge is
    5·1 answer
  • Cross-Text Discussion​
    6·1 answer
  • A student is on a balcony 15.6 m above the street. She throws a ball vertically downward at 10.7 m/s.
    13·1 answer
  • Газ имеет объем 2 м³ при давлении 10° Па. Найдите обьем этого газа при изотермическом уменьшении давления в два раза.​
    6·1 answer
  • Which is the most likely location in the home for mold growth? A) bathroom windows B) living room furniture C) computer keyboard
    11·2 answers
  • Two difference between far point and near point​
    9·1 answer
  • Disordered eating is often __________.
    6·2 answers
  • A rocket is launched straight up with constant acceleration. Four seconds after liftoff, a bolt falls off the side of the rocket
    9·1 answer
  • 13. A ball is dropped. According to Newton's Third Law, the action force is the
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!