0.6764*10^-10m
Explanation:
Using E= hc/wavelength
(4.14x10^-15)x(3.0x10^8)/(65x10^-12)=0.1911x10^5 eV=19.1 keV
So subtract the calculated energy from the given energy of scattered photons
9.11-0.75=18.36 keV
To find wavelength
Wavelength= hc/ E
[(4.14x 10^-15)x (3.0x10^8)]/(18.36*10^3) =0.6764^-10 m
The density is 81.4 g/m3. Before you start plugging numbers into the density formula (D=M/V), you should convert 104 kg to grams, which ends up being 104,000 grams. Then you can plug in the 104,000 grams and 1,278 m3 into the formula. When you divide the mass by the volume, you get a really long decimal, which you can round to 81.4 g/m3, or whatever place your teacher wants you to round to.
Answer:
32 cm
Explanation:
f = focal length of the converging lens = 16 cm
Since the lens produce the image with same size as object, magnification is given as
m = magnification = - 1
p = distance of the object from the lens
q = distance of the image from the lens
magnification is given as
m = - q/p
- 1 = - q/p
q = p eq-1
Using the lens equation, we get
1/p + 1/q = 1/f
using eq-1
1/p + 1/p = 1/16
p = 32 cm
(1) You must find the point of equilibrium between the two forces,
<span>G * <span><span><span>MT</span><span>ms / </span></span><span>(R−x)^2 </span></span>= G * <span><span><span>ML</span><span>ms / </span></span><span>x^2
MT / (R-x)^2 = ML / x^2
So,
x = R * sqrt(ML * MT) - ML / (MT - ML)
R = is the distance between Earth and Moon.
</span></span></span>The result should be,
x = 3.83 * 10^7m
from the center of the Moon, and
R - x = 3.46*10^8 m
from the center of the Earth.
(2) As the distance from the center of the Earth is the number we found before,
d = R - x = 3.46*10^8m
The acceleration at this point is
g = G * MT / d^2
g = 3.33*10^-3 m/s^2
<span>
be aware of large trucks on the roadway
Tip: usually, these signs are hazard signs or warning.
Also, this isnt physics </span><span />