Answer:
The answer is 576.0473
Explanation:
Hope this helps.
Please mark my answer as brainliest?
Answer:
Explanation:
Charge on uranium ion = charge of a single electron
= 1.6 x 10⁻¹⁹ C
charge on doubly ionised iron atom = charge of 2 electron
= 2 x 1.6 x 10⁻¹⁹ C = 3.2 x 10⁻¹⁹ C
Let the required distance from uranium ion be d .
force on electron at distance d from uranium ion
= 9 x 10⁹ x 1.6 x 10⁻¹⁹ / r²
force on electron at distance 61.10 x 10⁻⁹ - r from iron ion
= 9 x 10⁹ x 3.2 x 10⁻¹⁹ / (61.10 x 10⁻⁹ - r )²
For equilibrium ,
9 x 10⁹ x 1.6 x 10⁻¹⁹ / r² = 9 x 10⁹ x 3.2 x 10⁻¹⁹ / (61.10 x 10⁻⁹ - r )²
2 d² = (61.10 x 10⁻⁹ - r )²
1.414 r = 61.10 x 10⁻⁹ - r
2.414 r = 61.10 x 10⁻⁹
r = 25.31 nm .
Answer:
1 angstrom = 0.1nm
5000 angstrom = 5000/1 × 0.1nm
<h3>= 500nm</h3>

5000 angstrom = 5000 × 1 × 10^-10
<h3>= 5 × 10^-7 m</h3>
Hope this helps you
Answer:
Explanation:
a) KE = (1/2) * m * (
) = F * d = 14m * 200N = 2800 m/N or 2.8 *
m/N
b) 0J and 0m/s (if Marcella stopped after going 14 meters)
c) Known from part (a) that KE = 2800 J = F1 * d1,
2800J = F1 * (14m - 1m) => F1 = 2800J/13m = 215.384 N
3.87 i think but if its not correct then let me know.