1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Irina-Kira [14]
1 year ago
7

How do H3O+ and OH relate to acids, bases and the pH scale?

Chemistry
1 answer:
Liula [17]1 year ago
6 0

Answer: An acid is defined with having more [H₃O+] ions, and a base is defined with having more [OH-] ions. On the pH scale, an acid has a lower pH and a base has a higher pH. With this being said, the lower the pH, the more [H₃O+] ions are present and the higher the pH, the more [OH-] ions are present.

Explanation:

I hope this helps!! Pls give brainliest!! :)

You might be interested in
\"Moving down group 2A (Alkaline Earth Metals), which element has the largest first ionization energy?\" Is the answer to this:
lesya692 [45]

Ionization energy is the energy required to remove the outermost electron from one mole of gaseous atom to produce 1 mole of gaseous in to produce a charge of 1. The greater the ionization energy, the greater is the chance f the electron to be removed from the nucleus. In this casse, Radium has the largest ionization energy.

6 0
3 years ago
Which of the following would release the most heat? Assume the same mass of in each case. Specific heats of ice, liquid water, a
lesya692 [45]

Answer:

The process which releases most heat is E)

Explanation:

As we know that water freezes at 0ºC and vaporizes at 100ºC, we calculate the heat as follows:

  • Processes with temperatures < 0ºC : by using specific heat of ice (Sh ice) multiplied by the change in temperature (ΔT= Final Temperature - Initial Temperature)⇒ Sh ice x ΔT
  • Processes of ice melting (at 0ºC): by using heat of fusion of ice (ΔH fus) multiplied by a conversor factor (1 mol H20= 18 g)⇒ ΔHfus x 1mol/18g
  • Processes between 0ºC and 100ºC: by using specific heat of liquid water (Sh liq) multiplied by change in temperature ⇒ Sh liq x ΔT
  • Processes of water evaporation (at 100ºC): by using heat of vaporization (ΔH vap) multiplied by the conversor factor ⇒ ΔH vap x 1mol/18 g
  • Processes at a temperature >100ºC: by using specific heat of water vapor (Sh vap) multiplied by the change in temperature ⇒ Sh vap x ΔT

A) Water at -25ºC is ice. Ice is heated from -25ºC to 0ºC, then it melts at 0ºC (ice became liquid water) and then liquid water is heated from 0ºC to 70ºC. T

This is the only process in with the heat is absorbed (not releases), so it cannot be the right answer, but we calculate the heat involved to practice:

Heat= (Sh ice x ΔT) + (ΔH fus x 1/18 g) + Sh liq x ΔT

Heat= (2.05 J/g ºC x (0ºC -(-25ºC) ) + (6.01 x 10³ J/mol x 1 mol/18 g) + (4.18 J/g ºC x (70ºC-0ºC)

Heat= 51.25 J + 333,8 J +292.6 J

Heat= 677.65 J (heat is absorbed)

B) Water is cooled from 13ºC to 0ºC, then it is freezed at 0ºC and then the ice is cooled from 0ºC to -2.6 ºC

Heat= (Sh liq x ΔT) + (-ΔH melt x 1/18 g) + (Sh ice x ΔT)

Heat= 4.18 J/ºC x (0ºC- 13ºC) + (-6.01 x 10³ J/mol x 1mol/18 g) + (2.05 J/ºC x (-2.5ºc - 0ºC)

Heat= -54.34 J - 333.8 J + 5.33 J

Heat= -393.47 J (heat is released)

C) Liquid water is cooled from 74ºC to 95ºC

Heat= Sh liq x ΔT

Heat= 4.18 J/ºC x (74ºC - 95ºC)

Heat = -87.78 J (heat is released)

D) Water at 140ºC is in vapor state. Vapor at 140ºC is cooled to 110ºC (still vapor).

Heat = Sh vap x ΔT

Heat= 2.01 J/ºC x (110ºC - 140ºC)

Heat= -60.3 J (heat is released)

E) Vapor at 106ºC is cooled to 100ºC, then it condenses at 100ºC (convertion from gas to liquid), and liquid water is cooled from 100ºC to 88ºC.

Heat= (Sh vap x ΔT) + (-ΔHvap x 1mol/18g) + (Sh liq x ΔT)

Heat= (2.01 J/ºC x (100ºC-106ºC)) - (40.7 x 10³ J/mol x 1mol/18 g) + (4.18 J/ºC x (88ºC -100ºC)

Heat= -2323.32 J (heat is released) <u>THIS IS THE RIGHT ANSWER</u> (the more negative= the more released)

7 0
3 years ago
Identify the weak diprotic acid. identify the weak diprotic acid. h2so4 hcooh
slega [8]
Among formic acid (HCOOH ) and sulfuric acid (H₂SO₄), formic acid is the weak acid. Acidic strength of any acid is the tendency of that acid to loose proton. Among these two acids formic acid has a pKa value of 3.74 greater than that of sulfuric acid i.e. -10. Remember! Greater the pKa value of acid weaker is that acid and vice versa. Below I have drawn the Ionization of both acids to corresponding conjugate bases and protons. The structures below with charges are drawn in order to explain the reason for strength. As it is seen in charged structure of formic acid, there is one positive charge on carbon next to oxygen carrying proton. The electron density is shifted toward carbon as it is electron deficient and demands more electron hence, attracting electron density from oxygen and making the oxygen hydrogen bond more polar. While, in case of sulfuric acid it is depicted that Sulfur attached to oxygen containing proton has 2+ charge, means more electron deficient as compared to carbon of formic acid, hence, more electron demanding and strongly attracting electrons from oxygen and making the oxygen hydrogen bond very polar and highly ionizable.

7 0
3 years ago
What subatomic particles participate in chemical bonding
Advocard [28]
The subatomic particle involved in chemical bonding is the electron. Electrons are the smallest of all subatomic particles and orbit the nucleus in discrete energy levels called shells. Electrons are negatively charged and the nucleus is positively charged due to the protons.
7 0
3 years ago
Which statement best explains why mass is not conserved in a nuclear change?
kogti [31]

Answer:

Mass in nuclear reactions is not strictly conserved due to this principle of mass and energy being quite similar. We know that nuclear reactions release a lot of energy. This energy, though, is actually mass that is lost from nucleons, converted into energy, and lost as the mass defect.

Some mass is turned into energy, according to E=mc2.

<em><u>Explanation:</u></em>

E=mc2 is probably the most famous equation. E is the energy, m is mass, and c is the constant speed of light. Einstein came up with it to show that energy and mass are proportional - one can turn into the other, and back again.

Mass in nuclear reactions is not strictly conserved due to this principle of mass and energy being quite similar. We know that nuclear reactions release a lot of energy. This energy, though, is actually mass that is lost from nucleons, converted into energy, and lost as the mass defect.

5 0
2 years ago
Other questions:
  • Explain why lattice energy is the key to the formation of a salt
    12·1 answer
  • Whick ions profuce similar colors in the flame tests?
    5·1 answer
  • What is the mass in milligrams of 4.30 moles of sodium? use significant figures?
    5·1 answer
  • A chemist has 2.0 mol of methanol (CH3OH). The molar mass of methanol is 32.0 g/mol. What is the mass, in grams, of the sample?
    7·2 answers
  • Convert 7.72 years into days.
    6·2 answers
  • How many liters are in 1576.94 mL?
    14·1 answer
  • ASAP please
    8·1 answer
  • Consider the reaction below the reactivities of tertiary,secondary and primary hydrogen are 1700: 5:1 respectively. Predict the
    14·1 answer
  • A construction worker uses a pulley and a rope to
    13·1 answer
  • Only animals and not plants can adapt to their environment true or false
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!