Aluminum sulfide : Al₂S₃
ratio cation : anion = 2 : 3
<h3>Further explanation</h3>
Given
Compound of Aluminium
Required
cations anions ratio
Solution
Salt can be formed from cations and anions which have their respective charges.
In the chemical compound formula these charges are crossed with each other
For aluminum it has a +3 charge
1. Aluminum carbide : Al₄C₃
ratio cation : anion = 4 : 3
2. Aluminum chloride : AlCl₃
ratio cation : anion = 1 : 3
3. Aluminum sulfide : Al₂S₃
ratio cation : anion = 2 : 3
4. Aluminum nitride : AlN
ratio cation : anion = 1 : 1
Answer:
Atoms He (Avogadro’s number) → Moles of He (molar mass of He) → Mass of He
• molar mass of He (from the periodic table) = 4.003 g/mol
• Avogadro’s Number: Avogadro’s number gives us the number of entities present in 1 mole: 6.022 × 1023 He atoms in 1 mole of He
hope this is help full please mark me Brainliest
Answer is: The molar solubility of ba3(po4)2 is <span>6.00 x 10-39.
</span>Balanced chemical reaction: Ba₃(PO₄)₂(s) → 3Ba²⁺(aq) + 2PO₄³⁻(aq).
s(Ba₃(PO₄)₂) = 8.89·10⁻⁹ M.
[Ba²⁺] = 3s(Ba₃(PO₄)₂) = 3s.
[PO₄³⁻] = 2s.
Ksp = [Ba²⁺]³ · [PO₄³⁻]².
Ksp = (3s)³ · (2s)².
Ksp = 108s⁵.
Ksp = 108·(8.89·10⁻⁹ M)⁵.
Ksp = 108 · 5.55·10⁻⁴¹ = 6·10⁻³⁹.
They are different beacause of the stages some you can see and not. And the cells move at different paces
Answer:
In alpha decay, shown in Fig. 3-3, the nucleus emits a 4He nucleus, an alpha particle. Alpha decay occurs most often in massive nuclei that have too large a proton to neutron ratio. An alpha particle, with its two protons and two neutrons, is a very stable configuration of particles. Alpha radiation reduces the ratio of protons to neutrons in the parent nucleus, bringing it to a more stable configuration. Many nuclei more massive than lead decay by this method.
Explanation: