Answer:
W = F * s
Work done equals applied force * distance traveled
Apparent weight = M g (1 - sin θ) since some of applied force will lighten sled
μ = coefficient of kinetic friction
F cos θ = force applied to motion of sled
s = distance traveled
[μ M g (1 - sin θ)] cos θ * s = work done in moving sled
Note that F = μ M g if applied force is in the horizontal direction
Answer:
YFy = 0 = Ffsinθ + Fncosθ - Fw
Explanation:
From the base of the vector Fn, draw a vertical line. the small angle between this line and Fn is also theta. The component of Fn in the vertical direction is Fncos(theta).
Take a moment to picture extreme cases. Sine is 0 at 0 and 1 at 90. Cosine is 1 at 0 and 0 at 90.
Tilt the incline so that the box is on a flat surface. How much of the gravitational force is along the x direction of the floor.
Solving for vf gives you PiVi/Pf. Now plug in 101kPa*10L/43kPa = 23.48L. Using significant figures i would round to 23.5L
Answer:
electromagnetic waves only
Explanation:
I just took the test, Hope it helps!